Gholizadeh S, Torkzadeh P, Jabarzadeh S. OPTIMUM SHAPE DESIGN OF DOUBLE-LAYER GRIDS BY QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION AND NEURAL NETWORKS. IJOCE 2013; 3 (1) :85-98
URL:
http://ijoce.iust.ac.ir/article-1-120-en.html
Abstract: (23927 Views)
In this paper, a methodology is presented for optimum shape design of double-layer grids subject to gravity and earthquake loadings. The design variables are the number of divisions in two directions, the height between two layers and the cross-sectional areas of the structural elements. The objective function is the weight of the structure and the design constraints are some limitations on stress and slenderness of the elements besides the vertical displacements of the joints. To achieve the optimization task a variant of particle swarm optimization (PSO) entitled as quantum-behaved particle swarm optimization (QPSO) algorithm is employed. The computational burden of the optimization process due to performing time history analysis is very high. In order to decrease the optimization time, the radial basis function (RBF) neural networks are employed to predict the desired responses of the structures during the optimization process. The numerical results demonstrate the effectiveness of the presented methodology
Type of Study:
Research |
Subject:
Optimal design Received: 2013/01/22 | Published: 2013/03/15