دوره 3، شماره 1 - ( 12-1391 )                   جلد 3 شماره 1 صفحات 98-85 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholizadeh S, Torkzadeh P, Jabarzadeh S. OPTIMUM SHAPE DESIGN OF DOUBLE-LAYER GRIDS BY QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION AND NEURAL NETWORKS. IJOCE 2013; 3 (1) :85-98
URL: http://ijoce.iust.ac.ir/article-1-120-fa.html
OPTIMUM SHAPE DESIGN OF DOUBLE-LAYER GRIDS BY QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION AND NEURAL NETWORKS. عنوان نشریه. 1391; 3 (1) :85-98

URL: http://ijoce.iust.ac.ir/article-1-120-fa.html


چکیده:   (24136 مشاهده)
In this paper, a methodology is presented for optimum shape design of double-layer grids subject to gravity and earthquake loadings. The design variables are the number of divisions in two directions, the height between two layers and the cross-sectional areas of the structural elements. The objective function is the weight of the structure and the design constraints are some limitations on stress and slenderness of the elements besides the vertical displacements of the joints. To achieve the optimization task a variant of particle swarm optimization (PSO) entitled as quantum-behaved particle swarm optimization (QPSO) algorithm is employed. The computational burden of the optimization process due to performing time history analysis is very high. In order to decrease the optimization time, the radial basis function (RBF) neural networks are employed to predict the desired responses of the structures during the optimization process. The numerical results demonstrate the effectiveness of the presented methodology
متن کامل [PDF 634 kb]   (6586 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: 1391/11/3 | انتشار: 1391/12/25

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb