Search published articles


Showing 2 results for Seismic Control

Y. Naserifar, M. Shahrouzi,
Volume 10, Issue 4 (10-2020)
Abstract

Passive systems are preferred tools for seismic control of buildings challenged by probabilistic nature of the input excitation. However, other types of uncertainty still exist in parameters of the control device even when optimally tuned. The present work concerns optimal design of multiple-tuned-mass-damper embedded on a shear building by a number of meta-heuristics. They include well-known genetic algorithm and particle swarm optimization as well as more recent gray wolf optimizer and its hybrid method embedding swarm intelligence. The study is two-fold: first, optimal designs by different meta-heuristics are compared concerning their reduction in structural seismic responses; second, the effect of uncertainty in Multi-Tuned-Mass-Damper parameters, is studied offering new reliability-based curves. Monte Carlo Simulation is employed to evaluate failure probabilities. A variety of structural responses are assessed against seismic excitation including maximal displacement, velocity and acceleration. It is declared that the best algorithm for efficiency and effectiveness has not coincided the best based on the reliability traces. Such traces also show that in a specific range of limit-states, algorithm selection has a serious effect on the reliability results. It was found even more than 35% and depends on the response type.  
M. Shahrouzi, M. Fahimi Farzam, J. Gholizadeh,
Volume 15, Issue 2 (4-2025)
Abstract

The tuned mass damper inerter systems have recently received considerable attention in the field of structural control. The present work offers a practical configuration of such a device, called double tuned mass damper inerter (DTMDI) that connects the inerter into the damper masses rather than be attached to the main structure. Soil-structure interaction is also taken into account for the soft and dense soils as well as for the fixed based condition. The H  norm of the transfer functions for the roof response is minimized as the objective function. The parameters of DTMDI are optimized using opposition-switching search as an efficient parameter-less algorithm in comparison with lightning attachment procedure optimization, sine cosine algorithm and particle swarm optimization. The system performance is evaluated in the frequency domain, as well as in the time domain under various earthquakes including far-field records, near-field records with forward directivity and with fling-step. The results show superiority of opposition-switching search for optimal design of the proposed DTMDI so that it can significantly reduce both the roof displacement and acceleration response for all the SSI conditions.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb