جلد 31، شماره 3 - ( 7-1399 )                   جلد 31 شماره 3 صفحات 386-379 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

venkata appaji S, Shiva Shankar R, Murthy K, Someswara Rao C. Breast Cancer Disease Prediction With Recurrent Neural Networks (RNN). IJIEPR 2020; 31 (3) :379-386
URL: http://ijiepr.iust.ac.ir/article-1-1069-fa.html
Breast Cancer Disease Prediction With Recurrent Neural Networks (RNN). نشریه بین المللی مهندسی صنایع و تحقیقات تولید. 1399; 31 (3) :379-386

URL: http://ijiepr.iust.ac.ir/article-1-1069-fa.html


چکیده:   (2823 مشاهده)
Cancer is a consortium of diseases which comprises abnormal increase in cells growth by having potential to occupy and attack the entire body. According to study breast cancer is the most likely occurs in the women and which became the second biggest cause of women death. Due to its wide spread and importance some of the researchers work on this, but still there is a need to improvement. During this work in order to partially fulfill this proposed technique of deep learning along with RNN in predicting breast cancer disease which will help the doctor while diagnosis the patient. To assess the efficiency of the proposed method we used breast cancer data belong to UC Irvine repository. Precision, recall, accuracy and f1 score of proposed method shows good scores and proposed technique performs well Consortium
     
نوع مطالعه: پژوهشي | موضوع مقاله: زنجیره تامین و لجستیک
دریافت: 1399/2/14 | پذیرش: 1399/2/14 | انتشار: 1399/2/14

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه بین المللی مهندسی صنایع و تحقیقات تولید می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | International Journal of Industrial Engineering & Production Research

Designed & Developed by : Yektaweb