جلد 31، شماره 3 - ( 7-1399 )                   جلد 31 شماره 3 صفحات 350-343 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sasikanth K, Samatha K, Deshai N, Sekhar B V D S, Venkatramana S. Effective Sentiment Analysis on Twitter with Apache Spark. IJIEPR 2020; 31 (3) :343-350
URL: http://ijiepr.iust.ac.ir/article-1-1067-fa.html
Effective Sentiment Analysis on Twitter with Apache Spark. نشریه بین المللی مهندسی صنایع و تحقیقات تولید. 1399; 31 (3) :343-350

URL: http://ijiepr.iust.ac.ir/article-1-1067-fa.html


چکیده:   (4999 مشاهده)
The Today’s interconnected world generates huge digital data, while millions of users share their opinions, feelings on various topics through popular applications such as social media, different micro blogging sites, and various review sites on every day. Nowadays Sentiment Analysis on Twitter Data which is considered as a very important problem particularly for various organizations or companies who want to know the customers feelings and opinions about their products and services. Because of the data nature, variety and enormous size, it is very practical for several applications, range from choice and decision creation to product assessment. Tweets are being used to convey the sentiment of a tweeter on a specific topic. Those companies keeping survey millions of tweets on some kind of subjects to evaluate actual opinion and to know the customer feelings. This paper major goal would be to significantly collect, recognize, filter, reduce and analyze all such relevant opinions, emotions, and feelings of people on different product or service could be categorized into positive, negative or neutral because such categorization improves sales growth about a company's products or films, etc. We initiate that the Naïve Bayes classifier be the mainly utilized machine learning method for mining feelings from large data like twitter and popular social network because of its more accuracy rates. In this paper, we scrutinize sentiment polarity analysis on Twitter data in a distributed environment, known as Apache Spark.
     
نوع مطالعه: پژوهشي | موضوع مقاله: زنجیره تامین و لجستیک
دریافت: 1399/2/14 | پذیرش: 1399/2/14 | انتشار: 1399/2/14

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه بین المللی مهندسی صنایع و تحقیقات تولید می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | International Journal of Industrial Engineering & Production Research

Designed & Developed by : Yektaweb