Search published articles


Showing 2 results for Logistic Regression

Biswapriyo Sen, Maharishi Kashyap, Jitendra Singh Tamang, Sital Sharma, Rijhi Dey,
Volume 20, Issue 2 (6-2024)
Abstract

Cardiovascular arrhythmia is indeed one of the most prevalent cardiac issues globally. In this paper, the primary objective was to develop and evaluate an automated classification system. This system utilizes a comprehensive database of electro- cardiogram (ECG) data, with a particular focus on improving the detection of minority arrhythmia classes.
In this study, the focus was on investigating the performance of three different supervised machine learning models in the context of arrhythmia detection. These models included Support Vector Machine (SVM), Logistic Regression (LR) and Random Forest (RF). An analysis was conducted using real inter-patient electrocardiogram (ECG) records, which is a more realistic scenario in a clinical environment where ECG data comes from various patients.
The study evaluated the models’ performances based on four important metrics: accuracy, precision, recall, and f1-score. After thorough experimentation, the results highlighted that the Random Forest (RF) classifier outperformed the other methods in all of the metrics used in the experiments. This classifier achieved an impressive accuracy of 0.94, indicating its effectiveness in accurately detecting arrhythmia in diverse ECG signals collected from different patients.
Sandra D’souza, Niranjan Reddy S, Saikonda Krishna Tarun, Sohan P, Aneesha Acharya K,
Volume 20, Issue 4 (11-2024)
Abstract

The incidence of heart-related illnesses is on the rise worldwide. Heart diseases are primarily caused by a multitude of parameters, including high blood pressure, diabetes, and excessive cholesterol, which are controlled by poor dietary and lifestyle choices. The growth in cardiovascular diseases (CVD) is mostly due to several other behaviors, such as smoking, drinking, and sleeplessness. In the research, machine learning-based prediction methods work on the audio recordings of heartbeats known as phonocardiograms (PCG) to develop an algorithm that differentiates a normal healthy heart from an abnormal heart based on the heart sounds. The data set consists of 831 normal and 260 abnormal data, and the duration of each sample is 5 seconds. Features extracted from the data are up-sampled and applied to the logistic regression and random forest classification models. The developed models record a classification accuracy of 71% for logistic regression and 94% for the random forest model. Further, artificial neural networks (ANN) and Deep learning networks have been trained to improve performance and demonstrated an accuracy of 94.5%.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.