Search published articles


Showing 5 results for Temperature

Prof. M Khalaj-Amirhosseini,
Volume 11, Issue 4 (12-2015)
Abstract

The ideal analysis of planar diodes in Temperature Limited Region is presented. Two types of relations are obtained for electric potential and electric field distributions one accurate but implicit and the other almost accurate but explicit.

AWT IMAGE


M. Akbari Eshkalak,
Volume 12, Issue 2 (6-2016)
Abstract

This paper is the first study on the impact of ambient temperature on the electrical characteristics and high frequency performances of double gate armchair graphene nanoribbon field effect transistor (GNRFET). The results illustrate that the GNRFET under high temperature (HT-GNRFET) has the highest cut-off frequency, lowest sub-threshold swing, lowest intrinsic delay and power delay product compared with low-temperature GNRFET (LT-GNRFET) and medium-temperature GNRFET (MTGNRFET). Besides, the LT-GNRFET demonstrates the lowest off-state current and the highest ratios of Ion/Ioff, average velocity and mobile charge. In addition, the LT-GNRFET has the highest gate and quantum capacitances among three aforementioned GNRFETs.


Y. A. Baadj, F. Rogti,
Volume 13, Issue 2 (6-2017)
Abstract

Multidielectric polyethylene is a material that is generally employed as insulation for  the HVDC isolations. In this paper, the influence of temperature on space charge dynamics has been studied, low-density polyethylene (LDPE) and Fluorinated Ethylene Propylene (FEP) sandwiched between two electrodes were subjected to voltage application of 5kV (14.3 kV/mm) for extended duration of time and the space charge measurements were taken using bipolar model is one-dimensional, taking into account trapping, detrapping and the rencommbinaison in order to determine the charge density and electric field of the sample depending on the thickness. The simulation was carried out at three different temperatures (20, 40,  and 60°C). The results of this model going to compare with experimental space charge measurements . Finally, simulation results demonstrated that the temperature has many effects on the dynamic space charge  and of influences the charge injection, charge mobility, electrical conduction, trapping and detrapping.


A. O. Amole, O. E. Olabode, D. O. Akinyele, S. G. Akinjobi,
Volume 18, Issue 3 (9-2022)
Abstract

Milk is one of the important dairy foods, which forms an essential building block in the feed formulation for infant and growing children, and adults alike. However, the quality of the final product largely depends on the temperature of the pasteurization process. It is, therefore, a necessity to ensure that optimum temperature is maintained during pasteurization process, as over-temperature kills all the essential nutrients contained in the final product and similarly, low temperature is not desirable as the final product will not yield the desired nutritional value. As a result, the application of optimal temperature control scheme is a critical requirement for milk pasteurization. It is, on this background, that this paper presents the use of a Proportional (P), Integral (I), Derivative (D) abbreviated as PID controller for optimal control of temperature in the milk pasteurization process. The milk pasteurization temperature was modeled based on the first law of thermodynamics, while three different tuning techniques namely; Zigler-Nichols (ZN), Chien-Hrones-Reswick (CHR) and Cohen-Coon (CC) were employed to tune the PID controller for optimal control of the milk pasteurization temperature. The control schemes were simulated in MATLAB/Simulink, and the performance of each tuning technique was evaluated using the rise time, settling time, peak amplitude, and overshoot. Results showed that ZN tuned PID controller gave the lowest rise time, settling time, and peak amplitude of 0.177s, 0.34s, and 0.993, respectively, while the lowest overshoot of 0% was attained by both ZN and CHR. Based on these results, CC tuned PID controller exhibited moderate rise time of 1.02s, settling time of 6.49s, and overshoot of 5.67%, indicating that its performance is comparatively preferred with respect to other tuning techniques investigated. The results of this research find application in diary industries as it provides insight into the appropriate tuning technique for the PID controller to ensure optimum temperature control during milk pasteurization.

Jia Wen Tang, Chin Leong Wooi, Wen Shan Tan, Nur Hazirah Zaini, Yuan Kang Wu, Syahrun Nizam Bin Md Arshad@hashim,
Volume 21, Issue 2 (6-2025)
Abstract

Photovoltaic (PV) energy is increasingly recognized as an environmentally friendly source of renewable energy. Integrating PV systems into power grids involves power electronic inverters, adding complexity and evolving traditional grids into smarter systems. Ensuring the reliability of decentralized PV generation is crucial, particularly as PV systems are often exposed to extreme weather conditions. This study investigates the impact of temperature and solar radiation on the performance of a PV array, focusing on key characteristics such as open-circuit voltage (VOC), short-circuit current (ISC), and maximum power (PMAX). Using PSCAD/EMTDC simulations, the study analyses these characteristics under varying temperatures (5°C to 45°C) and radiation levels (200 W/m² to 1200 W/m²). Results indicate that VOC increases with higher irradiance but decreases with higher temperatures. ISC increases with both higher radiation and temperature, while PMAX is optimized at high irradiance and low temperatures. The impulse withstand voltage (Vimp), a critical factor for PV system reliability, is assessed according to the PD CLC/TS 50539-12 standard. Findings reveal that at low temperatures and high radiation, the Vimp requirement is highest, emphasizing the need for robust voltage protection in PV systems. These insights underscore the importance of considering local climate conditions and implementing effective thermal management to enhance the performance and reliability of PV systems.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.