Search published articles


Showing 2 results for Sinusoidal Oscillator

T. S. Arora,
Volume 16, Issue 2 (6-2020)
Abstract

Realization of a novel single-resistance-controlled oscillator, employing an active element and all grounded passive elements, is the purpose of this manuscript. With requirements for completing the design being only a single Voltage Differencing Current Conveyor and four grounded passive components, it is also a preferable choice for integrated circuit implementation. The designed circuit has an independent control of the frequency of oscillation and current mode output can be achieved from high impedance port, explicitly. Simulation results are presented using PSPICE software along with the regular mathematical analysis. At last experimental verification of the proposed circuit is shown using commercially available integrated circuits.

Arsen Ahmed, Hüseyin Demirel,
Volume 19, Issue 4 (12-2023)
Abstract

In the past twenty years, low-voltage and power design have gained attention in analog VLSI design, particularly for high-performance and portable integrated circuits (ICs). Because of the increasing density of large-scale integration, a single silicon A.S.I. chip could have thousands or even millions of transistors on it. A rise in integration levels led to the development of Fin-type Field Effect Transistor (FinFETs) technology. In this research, an improved circuit design for a floating active inductor (FAI) and quadrature sinusoidal oscillator (QSO) is implemented employing only two active filters, the Z-copy-Voltage Differential Transimpedance Amplifier (Zc-VDTA). The purpose of the FAI is to contain two Zc-VDTA and one resistor with a ground capacitor, and it is easy to integrate the parameters of the Zc-VDTA bias current (IB) through the adjustment of the circuit. In order to verify the dependability of the circuits designed using floating active inductance circuits, a Butterworth fourth-order low-pass filter was created via component replacement. All the simulations have been carried out on 7 nm using linear technology SPICE, and cadence virtuoso tool.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.