Search published articles


Showing 2 results for Power Transformers

Moniri, Farshad,
Volume 2, Issue 1 (1-2006)
Abstract

Power transformers are key components in electrical power supplies and their failure could cause severe consequences on continuity of service and also generates substantial costs. Identifying problems at an early stage, before catastrophic failure occurs, is a great benefit for reliable operation of power transformers. Frequency Response Analysis (FRA) is a new, well-known and powerful diagnostic test technique for transformers which could find mechanical as well as electrical faults such as detection and positioning of winding short circuit, winding movement, loss of clamping pressure, aging of insulation, etc. Yet there are several practical limitations to affect the accuracy and ease using this test as a regular condition monitoring technique in the field that many of them originated from noise and measuring errors. This paper purposes a transformer automated self diagnosis system can be installed on every power supply as a part of SCADA to extract FRA graphs from transformers and offers high repeatability which is a great benefit for FRA test. This is the first time that KALMAN Filter will be use in order to eliminate narrow-band and wide-band noises from FRA graphs that ends up not only smoothed measurement but also rate of changes that is so valuable in decision making and scheduling for transformers maintenance. So we will have an intelligent system which is able to predict the future of transformer using experience of not only own self but also all the transformers in an integrated network.


H. Radmanesh, M. Rostami,
Volume 7, Issue 4 (12-2011)
Abstract

this work studies the effect of neutral earth resistance on the controlling ferroresonance oscillation in the power transformer including MOV surge arrester. A simple case of ferroresonance circuit in a three phase transformer is used to show this phenomenon and the three-phase transformer core structures including nonlinear core losses are discussed. The effect of MOV surge arrester and neutral earth resistance on the onset of chaotic ferroresonance and controlling chaotic transient in a power transformer including nonlinear core losses has been studied. It is expected that these resistances generally cause into ferroresonance control. Simulation has been done on a power transformer rated 50 MVA, 635.1 kV with one open phase. The magnetization characteristic of the transformer is modelled by a single-value two-term polynomial with q=7, 11. The core losses are modelled by third order in terms of voltage. The simulation results reveal that connecting the MOV arrester and neutral resistance to the transformer, exhibits a great impact on ferroresonance over voltages. Copyright © 2009 Praise Worthy Prize S.r.l. - All rights reserved.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.