Search published articles


Showing 4 results for Pmsm

A.vahedi, M.ramezani,
Volume 1, Issue 2 (4-2005)
Abstract

Dc excitation of the field winding in a synchronous machine can be provided by permanent magnets. Permanent magnet synchronous machine (PMSM) can offer simpler construction, lower weight and size for the same performance, with reduced losses and higher efficiency. Thanks to the mentioned advantages these motors are widely used in different application, therefore analysis and modeling of them, is very important. In this paper a new, fast and simple method is presented to study performance of a PMSM connected to the converter. For this purpose, average-value modeling and related analytical relations which leads to the desired characteristics such as electromagnetic torque, dc current and dc voltage is presented and applied to PMSM & converter system. The advantage of this model lie in reduction of computation time compares to the other dynamic models while keeping accuracy quite acceptable. This model is applicable for studying the steady-state performance of systems as well as dynamic performance.
S. Ahmadi, A. Vahedi,
Volume 11, Issue 3 (9-2015)
Abstract

In this paper a multiobjective optimal design method of interior permanent magnet synchronous motor ( IPMSM) for traction applications so as to maximize average torque and to minimize torque ripple has been presented. Based on train motion equations and physical properties of train, desired specifications such as steady state speed, rated output power, acceleration time and rated speed of traction motor are related to each other. By considering the same output power, steady state speed, rated voltage, rated current and different acceleration time for a specified train, multiobjective optimal design has been performed by Broyden–Fletcher–Goldfarb–Shanno (BFGS) method and finite element method (FEM) has been chosen as an analysis tool. BFGS method is one of Quasi Newton methods and is counted in classic approaches. Classic optimization methods are appropriate when FEM is applied as an analysis tool and objective function isn’t expressed in closed form in terms of optimization variables.

AWT IMAGE


A. Younesi, S. Tohidi, M. R. Feyzi,
Volume 14, Issue 3 (9-2018)
Abstract

Model-based predictive control (MPC) is one of the most efficient techniques that is widely used in industrial applications. In such controllers, increasing the prediction horizon results in better selection of the optimal control signal sequence. On the other hand, increasing the prediction horizon increase the computational time of the optimization process which make it impossible to be implemented in real time. In order to solve this problem, this paper presents an improved strategy in the field of nonlinear MPC (NMPC) of the permanent magnet synchronous motor (PMSM). The proposed method applies a sequence of reduction weighting coefficients in the cost function, over the prediction horizon. By using the proposed strategy, NMPC give a more accurate response with less number of prediction horizon. This means the computational time is reduced. It also suggests using an incremental algorithm to reduce the computational time. Performance of the proposed Nonlinear MPC (NMPC) scheme is compared with the previous NMPC methods via simulations performed by MATLAB/Simulink software, in permanent magnet synchronous motor drive system. The results show that the use of proposed structure not only lowers prediction horizon and hence computational time, but also it improves speed tracking performance and reduces electromagnetic torque ripple. In addition, using the incremental algorithm also reduces the computational time which makes it suitable for real-time applications.

V. Naeini, M. Moomeni,
Volume 19, Issue 1 (3-2023)
Abstract

This paper introduces the modeling and fault diagnosis of rotor eccentricities of permanent magnetic synchronous machine (PMSM). The modeling of machine in healthy and fault condition have been proposed based on magnetic equivalent circuit (MEC). Nevertheless, the research methods of diagnosis and modeling are common, this paper tends to provide a fast computation and more detailed model with reasonable degree of accuracy. Firstly, the MEC modeling of PMSM in the electric and magnetic fields are introduced and next, the different fault conditions are carried out. Also to consider the eccentricity fault of an interior mounted PMSM, a methodology based on MEC is proposed. The accuracy of this model will be verified by comparing with identical results obtained by finite element method (FEM).
 


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.