Search published articles


Showing 4 results for Matlab

C. Nagarajan, M. Madheswaran,
Volume 8, Issue 3 (9-2012)
Abstract

This paper presents a Closed Loop CLL-T (capacitor inductor inductor) Series Parallel Resonant Converter (SPRC) has been simulated and the performance is analysised. A three element CLL-T SPRC working under load independent operation (voltage type and current type load) is presented in this paper. The Steady state Stability Analysis of CLL-T SPRC has been developed using State Space technique and the regulation of output voltage is done by using Fuzzy controller. The simulation study indicates the superiority of fuzzy control over the conventional control methods. The proposed approach is expected to provide better voltage regulation for dynamic load conditions. A prototype 300 W, 100 kHz converter is designed and built to experimentally demonstrate, dynamic and steady state performance for the CLL-T SPRC are compared from the simulation studies.
S. A. Rahman, S. Birhan, E. D. Mitiku, G. T. Aduye, P. Somasundaram,
Volume 17, Issue 4 (12-2021)
Abstract

Aim of this paper is to attain the highest voltage sag and swell compensation using a direct converter-based DVR topology. The projected DVR topology consists of a direct converter with bidirectional switches, a multi winding transformer with three primary windings and secondary winding and a series transformer. When voltage swell occurs in a phase, the same phase voltage can be utilized to mitigate the swell as huge voltage exists in the phase where swell has occurred. So it is possible to mitigate an infinite amount of swell. In all the DVR topologies, the converter is only used to synthesize the compensating voltage. The range of voltage sag mitigation depends upon the magnitude of input voltage available for the converter. If this input voltage of the direct converter is increased, then the range of voltage compensation could also be increased. Input voltage of the direct converter is increased using the multi winding transformer. The direct converter is synthesizing the compensating voltage. This compensating voltage is injected in series with the supply voltage through the series transformer and the sag is mitigated. In this proposed topology, the input voltage for the direct converter is increased by adding the three phase voltages using a multi winding transformer. Thus the voltage sag compensating range of this topology is increased to 68% and the swell compensating range is 500%. Ordinary PWM technique has been used to synthesize the PWM pulses for the direct converter and the THD of the compensated load voltage is less than 5%. This topology is simulated using MATLAB Simulink and the results are shown for authentication.

Syazwan Ahmad Sabri, Siti Rafidah Abdul Rahim, Azralmukmin Azmi, Syahrul Ashikin Azmi, Muhamad Hatta Hussain, Ismail Musirin,
Volume 21, Issue 2 (6-2025)
Abstract

The Marine Predator Algorithm (MPA) and Osprey Optimization Algorithm (OOA) are nature-inspired metaheuristic techniques used for optimizing the location and sizing of distributed generation (DG) in power distribution systems. MPA simulates marine predators' foraging strategies through Lévy and Brownian movements, while OOA models the hunting and survival tactics of ospreys, known for their remarkable fishing skills. Effective placement and sizing of DG units are crucial for minimizing network losses and ensuring cost efficiency. Improper configurations can lead to overcompensation or undercompensation in the network, increasing operational costs. Different DG technologies, such as photovoltaic (PV), wind, microturbines, and generators, vary significantly in cost and performance, highlighting the importance of selecting the right models and designs. This study compares MPA and OOA in optimizing the placement of multiple DGs with two types of power injection which are active and reactive power. Simulations on the IEEE 69-bus reliability test system, conducted using MATLAB, demonstrated MPA’s superiority, achieving a 69% reduction in active power losses compared to OOA’s 61%, highlighting its potential for more efficient DG placement in power distribution systems. The proposed approach incorporates a DG model encompassing multiple technologies to ensure economic feasibility and improve overall system performance.
Kumuthawathe Ananda-Rao, Steven Taniselass, Afifah Shuhada Rosmi, Aimi Salihah Abdul Nasir, Nor Hanisah Baharudin, Indra Nisja,
Volume 21, Issue 2 (6-2025)
Abstract

This study presents a Fuzzy Logic Controller (FLC)-based Maximum Power Point Tracking (MPPT) system for solar Photovoltaic (PV) setups, integrating PV panels, a boost converter, and battery storage. While FLC is known for its robustness in PV systems, challenges in battery charging and discharging efficiency can affect performance. The research addresses these challenges by optimizing battery charging, preventing overcharging, and enhancing overall system efficiency. The FLC MPPT system is designed to regulate the battery's State of Charge (SOC) while evaluating system performance under varying solar irradiance and temperature conditions. The system is modeled and simulated using MATLAB/Simulink, incorporating the PV system, MPPT algorithm, and models for the PV module and boost converter. System efficiency is assessed under different scenarios, with results showing 97.92% efficiency under Standard Test Conditions (STC) at 1000 W/m² and 25°C. Additionally, mean efficiencies of 97.13% and 96.13% are observed under varying irradiance and temperature, demonstrating the effectiveness of the FLC MPPT in regulating output. The system also extends battery life by optimizing power transfer between the PV module, boost converter, and battery, ensuring regulated SOC.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.