Showing 3 results for Least Squares
M. R. Mosavi, S. Azarshahi, I. Emamgholipour , A. A. Abedi,
Volume 10, Issue 1 (3-2014)
Abstract
In present study, using Least Squares (LS) method, we determine the position smoothing in GPS single-frequency receiver by means of pseudo-range and carrier phase measurements. The application of pseudo-range or carrier phase measurements in GPS receiver positioning separately can lead to defects. By means of pseudo-range data, we have position with less precision and more distortion. By use of carrier phase data, we do not have absolute position and just dislocation is available, but the accuracy is high. In present research, we have combined pseudo-range and carrier phase data using LS method in order to determine GPS receiver's position smoothing. The results of comparison by LS method show less RMS error, less calculation volume and more smoother in using carrier phase-pseudo-range data together relative to pseudo-range data in isolation.
M. Ajoudani, A. Sheikholeslami, A. Zakariazadeh,
Volume 16, Issue 4 (12-2020)
Abstract
The development of communications and telecommunications infrastructure, followed by the extension of a new generation of smart distribution grids, has brought real-time control of distribution systems to electrical industry professionals’ attention. Also, the increasing use of distributed generation (DG) resources and the need for participation in the system voltage control, which is possible only with central control of the distribution system, has increased the importance of the real-time operation of distribution systems. In real-time operation of a power system, what is important is that since the grid information is limited, the overall grid status such as the voltage phasor in the buses, current in branches, the values of loads, etc. are specified to the grid operators. This can occur with an active distribution system state estimation (ADSSE) method. The conventional method in the state estimation of an active distribution system is the weighted least squares (WLS) method. This paper presents a new method to modify the error modeling in the WLS method and improve the accuracy SVs estimations by including load variations (LVs) during measurement intervals, transmission time of data to the information collection center, and calculation time of the state variables (SVs), as well as by adjusting the variance in the smart meters (SM). The proposed method is tested on an IEEE 34-bus standard distribution system, and the results are compared with the conventional method. The simulation results reveal that the proposed approach is robust and reduces the estimation error, thereby improving ADSSE accuracy compared with the conventional methods.
Nerjes Rahemi, Kurosh Zarrinnegar, Mohammad Reza Mosavi,
Volume 21, Issue 3 (8-2025)
Abstract
In determining position using GPS, due to local effects, pseudo-range errors cannot be mitigated by methods such as the use of reference stations or mathematical models; however, by using precise carrier phase observations and deploying a statistically optimal filter such as Phase-Adjusted Pseudo-range (PAPR) algorithm, the error can be significantly reduced. Additionally, the correlation between observations is a factor affecting positioning accuracy. In this paper, by using both pseudo-range and carrier phase observations and taking into account the effect of spatial correlation between observations to determine the variance-covariance matrix, the accuracy of position determination using the recursive Least Squares method is increased. For this purpose, the PAPR algorithm was implemented to reduce error. Next, a non-diagonal variance-covariance matrix was introduced to estimate the variance of the observations based on their spatial correlations. Experimental results on real data show that the proposed method improves positioning accuracy by at least 10% compared to previous methods. To evaluate the complexity of the proposed models, we employed an ARM STM32H743 processor. The findings indicate a modest increase in the proposed model complexity compared to earlier models, along with a substantial improvement in positioning accuracy.