Search published articles


Showing 2 results for Inrush Current

M. Jamali, M. Mirzaie, S. A. Gholamian,
Volume 7, Issue 3 (9-2011)
Abstract

The phenomenon of magnetizing inrush is a transient condition, which occurs primarily when a transformer is energized. The magnitude of inrush current may be as high as ten times or more times of transformer rated current that causes malfunction of protection system. So, for safe running of a transformer, it is necessary to distinguish inrush current from fault currents. In this paper, an equivalent instantaneous inductance (EII) technique is used to discriminate inrush current from fault currents. For this purpose, a three-phase power transformer has been simulated in Maxwell software that is based on finite elements. This three-phase power transformer has been used to simulate different conditions. Then, the results have been used as inputs in MATLAB program to implement the equivalent instantaneous inductance technique. The results show that in the case of inrush current, the equivalent instantaneous inductance has a drastic variation, while it is almost constant in the cases of fault conditions.
M. A. Taghikhani, A. Sheikholeslami, Z. Taghikhani,
Volume 11, Issue 2 (6-2015)
Abstract

This paper presents a new method for evaluation and simulation of inrush current in various transformers using operational matrices and Hartley transform. Unlike most of the previous works, time and frequency domain calculations are conducted simultaneously. Mathematical equations are first represented to compute the inrush current based on reiteration and then Hartley transform is used to study harmonic effects in the frequency domain. Being a real valued function and accordingly giving results with the higher speed of calculations are the main features of Hartley transform. The inrush problem is initially solved for single-phase transformers for switching at different angles of the voltage waveform using this method and then the results of harmonic domain are compared with that of Fourier transform. The methodology is also applied to three-phase three-limb transformers since the analysis of their transient behavior is significant owing to the flux coupling interactions in multi-leg core structures. The feasibility and efficacy of the method is illustrated with appropriate circuits and MATLAB code is developed to get the time and frequency domain waveforms with high accuracy. The results are helpful to identify and evaluate inrush current harmonic effects in various transformers and hence the efficiency of the method is verified.

AWT IMAGE



Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.