Wan Ismail Ibrahim, Nasiruddin Sadan, Noorlina Ramli , Mohd Riduwan Ghazali Riduwan Ghazali , Ilham Fuad,
Volume 21, Issue 2 (6-2025)
Abstract
Hydrokinetic energy harnessing has emerged as a promising renewable energy that utilizes the kinetic energy of moving water to generate electricity. Nevertheless, the variation and fluctuation of water velocity and turbulence flow in a river is a challenging issue, especially in designing a control system that can harness the maximum output power with high efficiency. Besides, the conventional Hill-climbing Search (HCS) MPPT algorithm has weaknesses, such as slow tracking time and producing high steady-state oscillation, which reduces efficiency. In this paper, the Variable-Step Hill Climbing Search (VS-HCS) MPPT algorithm is proposed to solve the limitation of the conventional HCS MPPT. The model of hydrokinetic energy harnessing is developed using MATLAB/Simulink. The system consists of a water turbine, permanent magnet synchronous generator (PMSG), passive rectifier, and DC-DC boost converter. The results show that the power output achieves a 28 % increase over the system without MPPT and exhibits the lowest energy losses with a loss percentage of 0.9 %.