Showing 2 results for Fuzzy Logic Controller (flc)
Ying Foo Leong, Nizaruddin M. Nasir, Suliana Ab-Ghani, Norazila Jaalam, Nur Huda Ramlan,
Volume 21, Issue 2 (6-2025)
Abstract
This paper focuses on the application of a cascaded multilevel inverter, specifically the 5-level multilevel inverter, utilizing a proposed controller known as the FLC-PSO-PI controller. The primary challenge addressed in this research is the precise regulation of output voltage in the multilevel inverter during load variations while meeting voltage harmonic and transition requirements as per industry standards, which are the 10 % voltage limit recommended by IEC and 8 % of total harmonic distortion (THD) by IEEE. An innovative solution is proposed by integrating PSO and FLC to dynamically adapt the controller in real-time, ensuring stable and accurate output voltage regulation. The proposed controller is designed and simulated using MATLAB/Simulink, and its performance is compared with PSO-PI and no controller under various load conditions. The results demonstrate that the FLC-PSO-PI controller significantly enhances output voltage regulation were achieving the desired peak voltage and low THD across different load scenarios, including half load to full load (0.8 %) and no load to full load (0.89 %). Furthermore, the FLC-PSO-PI controller exhibits superior transient response characteristics, such as reduced overshooting (2.89 %), faster rise time at 36.946 µs, and satisfactory settling time at 151.014 µs. This research contributes to the advancement of multilevel inverter technology and its potential applications in renewable energy systems, motor drives, and grid-connected devices. The proposed FLC-PSO-PI controller offers a promising solution for precise voltage regulation in multilevel inverters, enhancing their performance and enabling widespread adoption in various industrial sectors.
Kumuthawathe Ananda-Rao, Steven Taniselass, Afifah Shuhada Rosmi, Aimi Salihah Abdul Nasir, Nor Hanisah Baharudin, Indra Nisja,
Volume 21, Issue 2 (6-2025)
Abstract
This study presents a Fuzzy Logic Controller (FLC)-based Maximum Power Point Tracking (MPPT) system for solar Photovoltaic (PV) setups, integrating PV panels, a boost converter, and battery storage. While FLC is known for its robustness in PV systems, challenges in battery charging and discharging efficiency can affect performance. The research addresses these challenges by optimizing battery charging, preventing overcharging, and enhancing overall system efficiency. The FLC MPPT system is designed to regulate the battery's State of Charge (SOC) while evaluating system performance under varying solar irradiance and temperature conditions. The system is modeled and simulated using MATLAB/Simulink, incorporating the PV system, MPPT algorithm, and models for the PV module and boost converter. System efficiency is assessed under different scenarios, with results showing 97.92% efficiency under Standard Test Conditions (STC) at 1000 W/m² and 25°C. Additionally, mean efficiencies of 97.13% and 96.13% are observed under varying irradiance and temperature, demonstrating the effectiveness of the FLC MPPT in regulating output. The system also extends battery life by optimizing power transfer between the PV module, boost converter, and battery, ensuring regulated SOC.