Search published articles


Showing 3 results for Filter Bank

S. K. Agrawal, O. P. Sahu,
Volume 10, Issue 4 (12-2014)
Abstract

In this paper, a novel technique for the design of two-channel Quadrature Mirror Filter (QMF) banks with linear phase in frequency domain is presented. To satisfy the exact reconstruction condition of the filter bank, low-pass prototype filter response in pass-band, transition band and stop band is optimized using unconstrained indirect update optimization method. The objective function is formulated as a weighted sum of pass-band error and stop-band residual energy of low-pass prototype filter, and the square error of the distortion transfer function of the QMF bank at the quadrature frequency. The performance of the proposed algorithm is evaluated in terms of Peak Reconstruction Error (PRE), mean square error in pass-band and stop-band regions and stop-band edge attenuation. Design examples are included to illustrate the performance of the proposed algorithm and the quality of the filter banks that can be designed.
Mohamed Hussien Moharam, Aya W. Wafik,
Volume 20, Issue 4 (11-2024)
Abstract

High peak-to-average power ratio (PAPR) has been a major drawback of Filter bank Multicarrier (FBMC) in the 5G system. This research aims to calculate the PAPR reduction associated with the FBMC system. This research uses four techniques to reduce PAPR. They are classical tone reservation (TR). It combines tone reservation with sliding window (SW-TR). It also combines them with active constellation extension (TRACE) and with deep learning (TR-Net). TR-net decreases the greatest PAPR reduction by around 8.6 dB compared to the original value. This work significantly advances PAPR reduction in FBMC systems by proposing three hybrid methods, emphasizing the deep learning-based TRNet technique as a groundbreaking solution for efficient, distortion-free signal processing.
Zahra Memarian, Mahdi Majidi,
Volume 21, Issue 3 (8-2025)
Abstract

This paper presents a two-dimensional (2D) direction of arrival (DOA) estimation method based on the popular correlative interferometer (CI) approach, incorporating practical considerations. Leveraging the flexibility of software-defined radio (SDR) platforms, the proposed array antenna model is designed according to the specifications of a dual-channel synchronous USRP B210 receiver and an appropriate RF switch. To enhance the speed and accuracy of 2D DOA estimation for narrowband, wideband (WB), and frequency hopping (FH) signals, this study introduces a method that integrates power spectrum density (PSD) and spectrogram analysis of the receiver’s instantaneous bandwidth with an optimized filter bank, to precisely detect active frequencies and their intervals. Additionally, a fast, modified K-means clustering algorithm is developed to refine DOA estimation for FH and WB signals across multiple active subchannels. Simulation results demonstrate improved DOA estimation accuracy in multipath conditions, particularly at longer distances, with further enhancements achieved through the proposed clustering method.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.