Search published articles


Showing 2 results for Fault Classification

M. Mollanezhad Heydar-Abadi , A. Akbari Foroud,
Volume 9, Issue 3 (9-2013)
Abstract

Fault classification in distance protection of transmission lines, with considering the wide variation in the fault operating conditions, has been very challenging task. This paper presents a probabilistic neural network (PNN) and new feature selection technique for fault classification in transmission lines. Initially, wavelet transform is used for feature extraction from half cycle of post-fault three phase currents at one end of line. In the proposed method three classifiers corresponding with three phases are used which fed by normalized particular features as wavelet energy ratio (WER) and ground index (GI). The PNNs are trained to provide faulted phase selection in different ten fault types. Finally, logic outputs of classifiers and GI identify the fault type. The feasibility of the proposed algorithm is tested on transmission line using PSCAD/EMTDC software. Variation of operating conditions in train cases is limited, but it is wide for test cases. Also, quantity of the test data sets is larger than the train data sets. The results indicate that the proposed technique is high speed, accurate and robust for a wide variation in operating conditions and noisy environments.
Arizadayana Zahalan, Samila Mat Zali, Ernie Che Mid, Noor Fazliana Fadzail,
Volume 21, Issue 2 (6-2025)
Abstract

Photovoltaic (PV) systems are vital in the global renewable energy landscape because of their capability to harness solar energy efficiently. Ensuring the continuous and efficient operation of PV systems is crucial in maximizing their energy contribution. However, these systems' reliability and safety remain critical because they are prone to various faults, mainly when operating in harsh environmental conditions. This study addresses these issues by exploring fault detection and classification in PV arrays using neural network (NN) -based techniques. A PV array model, consisting of 3x6 PV modules, was simulated using MATLAB Simulink to replicate real-world conditions and analyse various fault scenarios. An open circuit, a short circuit, and a degrading fault are the three types of faults considered in this study. The NN was trained on a dataset generated from the MATLAB Simulink model, encompassing normal operating and fault conditions. This training enables the network to learn the distinctive patterns associated with each fault type, enhancing its detection accuracy and classification capabilities. Simulation results demonstrate that the NN-based approach effectively identifies and classifies the three types of faults.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.