Search published articles


Showing 2 results for Doubly-Fed Induction Generator

G. Hamza, M. Sofiane, H. Benbouhenni, N. Bizon,
Volume 19, Issue 2 (6-2023)
Abstract

In this paper, a wind power system based on a doubly-fed induction generator (DFIG) is modeled and simulated. To guarantee high-performance control of the powers injected into the grid by the wind turbine, five intelligent super-twisting sliding mode controllers (STSMC) are used to eliminate the active power and current ripples of the DFIG. The STSMC controller is a high-order sliding mode controller which offers high robustness compared to the traditional sliding mode controller. In addition, it reduces the phenomenon of chattering due to the discontinuous component of the SMC technique. However, the simplicity, ease of execution, durability, and ease of adjusting response are among the most important features of this control compared to some other types. To increase the robustness and improve the response of STSMC, particle swarm optimization method is used for this purpose, where this algorithm is used for parameter calculation. The simulation results obtained using MATLAB software confirm the characteristics of the designed strategy in reducing chattering and ensuring good power control of the DFIG-based wind power.

Azzedine Khati,
Volume 20, Issue 3 (9-2024)
Abstract

In this research paper, a multivariable prediction control method based on direct vector control is applied to command the active power and reactive power of a doubly-fed induction generator used into a wind turbine system. To obtain high energy performance, the space vector modulation inverter based on fuzzy logic technique (fuzzy space vector modulation) is used to reduce stator currents harmonics and active power and reactive power ripples. Also the direct vector control model of the doubly-fed induction generator is required to ensure a decoupled control. Then its classic proportional integral regulators are replaced by the multivariable prediction controller in order to adjust the active and reactive power. So, in this work, we implement a new method of control for the doubly-fed induction generator energy. This method is carried out for the first time by combining the MPC strategy with artificial intelligence represented by Fuzzy SVM-based converter in order to overcome the drawbacks of other controllers used in renewable energies. The given simulation results using Matlab software show a good performance of the used strategy, particularly with regard to the quality of the energy supplied.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.