Search published articles


Showing 2 results for Artificial Bee Colony

R Subramanian, K Thanushkodi, A Prakash,
Volume 9, Issue 4 (12-2013)
Abstract

The Economic Load Dispatch (ELD) problems in power generation systems are to reduce the fuel cost by reducing the total cost for the generation of electric power. This paper presents an efficient Modified Firefly Algorithm (MFA), for solving ELD Problem. The main objective of the problems is to minimize the total fuel cost of the generating units having quadratic cost functions subjected to limits on generator true power output and transmission losses. The MFA is a stochastic, Meta heuristic approach based on the idealized behaviour of the flashing characteristics of fireflies. This paper presents an application of MFA to ELD for six generator test case system. MFA is applied to ELD problem and compared its solution quality and computation efficiency to Genetic algorithm (GA), Differential Evolution (DE), Particle swarm optimization (PSO), Artificial Bee Colony optimization (ABC), Biogeography-Based Optimization (BBO), Bacterial Foraging optimization (BFO), Firefly Algorithm (FA) techniques. The simulation result shows that the proposed algorithm outperforms previous optimization methods.
A. Pathak,
Volume 16, Issue 4 (12-2020)
Abstract

It is very difficult and expensive to replace sensor node battery in wireless sensor network in many critical conditions such as bridge supervising, resource exploration in hostile locations, and wildlife safety, etc. The natural choice in such situations is to maximize network lifetime. One such approach is to divide the sensing area of wireless sensor network into clusters to achieve high energy efficiency and to prolong network lifetime. In this paper, an Artificial Bee Colony Inspired Clustering Solution (ABCICS) is introduced. The proposed protocol selects the head of the cluster with optimal fitness function. The fitness function comprises the residual energy of node, node degree, node centrality, and distance from base station to node. When cluster-head with high energy node transmits the data to the base station, it further minimizes the energy consumption of the sensor network. The presented protocol is compared with LEACH, HSA-PSO, and MHACO-UC. Simulation experiments show the effectiveness of our approach to enhance the network lifetime.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.