Showing 9 results for Low Power
H. Faraji Baghtash, S. J. Azhari, Kh. Monfaredi,
Volume 7, Issue 4 (12-2011)
Abstract
In this paper a novel very high performance current mirror is presented. It favorably benefits from such excellent parameters as: Ultra high output resistance (36.9GΩ), extremely low input resistance (0.0058Ω), low output (~0.18V) and low input voltage (~0.18V) operation, very low power consumption (20μW), very low offset current (1pA), ultra wide current dynamic range (150dB), and ultra high accuracy (error = 0.003%). The circuit has a very simple compact architecture and uses a single 1V power supply. The qualitative performance of the circuit is validated with HSPICE simulations using HSPICE TSMC 0.18μm CMOS technology.
M. Rafei, M. R. Mosavi,
Volume 8, Issue 2 (6-2012)
Abstract
One of the most important features of the Active Inductors (AIs) is their input
equivalent resistance, namely series-loss resistance, which should be low enough to have a
high Quality Factor (QF). Most of the previous methods by this goal did not yield a high
enough QF. This paper presents a new method, namely applying an RC feedback, to cancel
series-loss resistance entirely. As the RC feedback cancels series-loss resistance, it
enhances the Self-Resonant Frequency (SRF) as well. The SRF of the AI has a range as
high as 0.25-12.5 GHz. Compared to the previous reports, the QF has been improved by
applying the RC feedback. The structure is such that the QF can be adjusted independent of
the SRF. For example, a very high quality factor of 13159 at the frequency of 6.6 GHz with
a 2.2 nH inductance is obtained, while noise voltage and power dissipation are less than 4.6
nV Hz and 4 mW, respectively. The AI is designed and simulated using 90 nm CMOS
process and 1.2 V power supply. To the best of authors’ knowledge, this is the first time an
RC feedback has been implemented to cancel series-loss resistance.
M. Ashraf,
Volume 14, Issue 2 (6-2018)
Abstract
This work studies the effects of dynamic threshold design techniques on the speed and power of digital circuits. A new dynamic threshold transistor structure has been proposed to improve performances of digital circuits. The proposed switched-capacitor dynamic threshold PMOS (SC-DTPMOS) scheme employs a capacitor along with an NMOS switch in order to effectively reduce the threshold voltage of a PMOS transistor. The proposed structure improves the propagation delay of a circuit and is much suitable for those circuits with high switching factor. Post layout simulation results using TSMC 180 nm CMOS technology at 0.2V supply voltage shows 45% improvement in delay as well as 25% less power consumption at the cost of only 53% more occupied area.
S. Mirzakuchaki, A. Heidari,
Volume 15, Issue 2 (6-2019)
Abstract
With the advent and development of the Internet of Things, new needs arose and more attention was paid to these needs. These needs include: low power consumption, low area consumption, low supply voltage, higher security and so on. Many solutions have been proposed to improve each one of these needs. In this paper, we try to reduce the power consumption and enhance the security by using SPGAL, a DPA-resistant Logic, and Carbon Nanotube FETs (CNTFETs) instead of conventional CMOS and MOSFET technology, for IoT devices. All simulations are done with HSPICE.
H. Faraji Baghtash, Kh. Monfaredi,
Volume 15, Issue 3 (9-2019)
Abstract
A novel active feedback frequency compensation scheme is presented in this work. Based on the proposed technique, an amplifier with two main poles in its frequency bandwidth can be easily compensated by introducing a pole-zero pair in a local feedback. The proposed method is mathematically analyzed and then based on the derived formulations, a design procedure is established. The capability of the proposed technique is examined considering a well-known two-stage amplifier, considering just a trivial modification on its input stage. To gain an analogous and fair insight, the performance of the proposed structure is compared with that is of the optimally designed miller-compensated two-stage amplifier. The post-layout simulations are accomplished with TSMC 180nm CMOS standard technology. The Spectre post-layout simulations show that the proposed structure outperforms the traditional structure in terms of power consumption and gain bandwidth product. The robustness of the design is checked with Monte Carlo simulations.
G. Morankar,
Volume 17, Issue 3 (9-2021)
Abstract
Tremendous developments in integrated circuit technology, wireless communication systems, and personal assistant devices have fuelled growth of Internet of Things (IoT) applications and smart cards. The security of these devices completely depends upon the generation of random and unpredictable digital data streams through random number generator. Low quality, low throughput, and high processing time are observed in software-based pseudo-random number generator due to interrelated data or programs and serial execution of codes respectively. In this paper, FPGA implementation of low power true random number generator through ring oscillator for IoT applications and smart cards is presented. Ring oscillators based on higher jitter and sampling techniques were exploited to present true random number generator. Further statistical parameters of the generated data streams are enhanced through feedback mechanism and post-processing technique. The presented true random number generator technique does not depend on the characteristics of a particular FPGA. The presented technique consumes low power, requires low hardware footprints and passes the entire National Institute of Standards & Technology (NIST) 800-22 statistical test suite. The presented low power and area true random number generator with enhanced security through post-processing unit may be applied for encryption/decryption of data in IoT and smart cards.
G. Vasudeva, B. V. Uma,
Volume 18, Issue 3 (9-2022)
Abstract
Successive approximation register (SAR) analog to digital converter (ADC) architecture comprises submodules such as comparator, digital to analog converters (DAC), and SAR logic. Each of these modules imposes challenges as the signal makes transition from analog to digital and vice-versa. Design strategies for optimum design of circuits considering 22nm FinFET technology meeting area, timing, power requirements, and ADC metrics are presented in this work. Operational Transconductance Amplifier (OTA) based comparator, 12-bit two-stage segmented resistive string DAC architecture, and low power SAR logic are designed and integrated to form the ADC architecture with a maximum sampling rate of 1 GS/s. Circuit schematic is captured in cadence environment with optimum geometrical parameters and performance metrics of the proposed ADC are evaluated in MATLAB environment. Differential nonlinearity and integral nonlinearity metrics for the 12-bit ADC are limited to +1.15/-1 LSB and +1.22/-0.69 LSB respectively. ENOB of 10.1663 with SNR of 62.9613 dB is achieved for the designed ADC measured for conversion of input signal of 100 MHz with 20dB noise. ADC with sampling frequency up to 1 GSps is designed in this work with low power dissipation of less than 10 mW.
Amirhossein Salimi, Behzad Ebrahimi, Massoud Dousti,
Volume 20, Issue 1 (3-2024)
Abstract
The scaling limitations of Complementary Metal-Oxide-Semiconductor (CMOS) transistors to achieve better performance have led to the attention of other structures to improve circuit performance. One of these structures is multi-valued circuits. In this paper, we will first study Carbon Nanotube Transistors (CNT). CNT transistors offer a viable means to implement multi-valued logic due to their variable and controllable threshold voltage. Subsequently, we delve into the realm of three-valued flip-flop circuits, which find extensive utility in digital electronics. Leveraging the insights gained from our analysis, we propose a novel D-type flip-flop structure. The presented structure boasts a remarkably low power consumption, showcasing a reduction exceeding 61% compared to other existing structures. Furthermore, the proposed circuit incorporates a reduced number of transistors, resulting in a reduced footprint. Importantly, this circuit exhibits negligible static power consumption in generating intermediate values, rendering it robust against process variations. Overall, the proposed circuits demonstrate a 29.7% increase in delay compared to the compared structures. However, they showcase a 96.1% reduction in power-delay product (PDP) compared to the other structures. The number of transistors is also 8.3% less than other structures. Additionally, their figure of merits (FOM) are 19.7% better than the best-compared circuit, underscoring its advantages in power efficiency, chip area, and performance.
Kavitha Manickam, P.k. Janani, S. Karthick, S. Arulsivam, C. Vikram, G. Hariharan, R. Kavinkumar, P. Ganesh,
Volume 20, Issue 2 (6-2024)
Abstract
The overall performance of any integrated circuit is defined by its proper memory design, as it is a mandatory and major block which requires more area and power. The prime interest of this article is to design a memory structure which is tolerant to variations in CNFET (Carbon nanotube field effect transistor) parameters like pitch, diameter and number of CNT tubes, and also offer low power and high speed of operation. In this context, CNFET based stacked SRAM (Static random access memory) design is proposed to attain the above mentioned criteria. Concept of stack effect is utilized in the cross coupled inverter section of the memory structure to attain low power. The power, speed and energy analysis for the proposed structure is done, and compared with the conventional structures to justify the proposed memory cell performance. HSPICE simulation results has confirmed that the proposed structure offers about 34%, 54% and 95% power saving in hold mode, read mode and write mode respectively. In speed and energy point of view it provides about 97% read delay, 92% write delay and 98% energy savings than the conventional memory structures. These results make it clear that the proposed SRAM is suitable for the 5G networks where circuit speed, power and energy consumption are the major concern.