F. Amanifard, N. Ramezani,
Volume 12, Issue 3 (9-2016)
Abstract
The article presents the transients analysis of the substation grounding systems and transmission line tower footing resistances which can affect to the back-flashover (BF) or overvoltage across insulator chain in an HV power systems by using EMTP-RV software. The related transient modeling of the grounding systems is based on a transmission line (TL) model with considering the soil ionization. In addition, different configuration of grounding system have been simulated to calculated the BF, including number of vertical grounding rod, length of rod, point of lightning current injection into the grounding grid and using two depth design of grounding system where the surface of substation under consideration is very small orit is necessary to bury the grounding grid in the rocky media, occasionally. The simulation results have shown that how the mentioned parameters can considerably affect inception of BF, and suitable design of grounding system can reduce damages caused by lightning.
Masume Khodsuz,
Volume 20, Issue 1 (3-2024)
Abstract
In this paper, the performance of the EGLA (Externally Gaped Line Arresters) and its impact on the back flashover rate of a 400 kV transmission line have been investigated. The frequency behavior of the grounding system and soil resistivity has been modeled. To analyze the EGLA performance in relation to the grounding system's frequency behavior, a rod-shaped grounding system model has been implemented. By placing the EGLA at different phases of the transmission line, the best scenario has been identified to minimize back-flashover occurrences. Furthermore, the performance of the frequency grounding system to that of the nonlinear grounding system has been compared. The results clearly indicate that using a nonlinear grounding system leads to higher back flashover rates compared to the frequency grounding system. Additionally, the EGLA absorbs less energy when connected to a nonlinear resistor compared to the frequency grounding system. It can be concluded that modeling the grounding system's frequency behavior using the frequency grounding model provides more accurate results, especially in investigations related to power grid insulation coordination.
Aida Gholami, Masume Khodsuz, Valiollah Mashayekhi,
Volume 21, Issue 1 (3-2025)
Abstract
Ensuring the protection of all components within power systems from lightning-induced overvoltage is crucial. The issue of power interruptions caused by both direct and indirect lightning strikes (LS) presents significant challenges in the electrical sector. In medium voltage distribution feeders, the relatively low dielectric strength makes them susceptible to insulation degradation, which can ultimately lead to failures in the distribution system. Therefore, implementing effective protective measures against LS is vital for maintaining an acceptable level of reliability in distribution systems. This paper presents an analytical assessment of LS-induced system overvoltage through high-frequency modeling of components within a 20kV distribution system. The study utilizes EMTP-RV software for precise component modeling, including the grounding system, surge arresters, and distribution feeders. Additionally, the operational impacts of protective devices, such as ZnO surge arresters, shield wires, and lightning rods, are evaluated to mitigate LS-induced overvoltage. A frequency grounding system is implemented using the method of moments (MOM) to analyze the grounding system's influence on LS-induced overvoltage. Furthermore, eight different scenarios are explored to assess the anti-LS capabilities of the 20kV distribution system. Each scenario involves evaluating dielectric breakdown and overvoltage across the insulator chain while proposing suitable protective solutions. The results indicate that the absence of shielding wires and surge arresters leads to higher breakdown voltages, with the lowest breakdown voltage occurring when surge arresters are installed during LS events. Additionally, the use of a frequency grounding system, due to its accurate modeling, yields more precise results compared to a static resistor approach. The MOM simulation reveals a 50% reduction in breakdown voltage under the worst-case scenario, and overall overvoltage experiences a 2% decrease.