Showing 4 results for Electric Field
H. Javadi, M. Farzaneh, A. Peyda,
Volume 6, Issue 2 (6-2010)
Abstract
This paper deals with the measurement of AC corona inception voltage, Vincp, at
the tip of a rod electrode using a hemispherically-capped rod-plane electrode configuration
for various rod radii with a short air gap. Effects of atmospheric pressure and temperature
variation on Vincp are investigated experimentally. An empirical equation for the field form
factors of the hemispherically capped rod-plane electrodes is proposed with its range of
applicability. The obtained results are analyzed to derive a more accurate analytical
equation for the calculation of the electric field at corona inception voltage, Eincp, and the
average of electric field distribution, Emean
E. Akbari, M. Mirzaie, M. B. Asadpoor, A. Rahimnejad,
Volume 9, Issue 1 (3-2013)
Abstract
Insulator strings with several material and profiles are very common in overhead transmission lines. However, the electric field and voltage distribution of insulator string is uneven which may easily lead to corona, insulators’ surface deterioration and even flashover. So the calculation of the electric field and voltage distribution along them is a very important factor in the operation time. Besides, no remarkable endeavor regarding insulator material and profile and their impacts upon the electric field and voltage distribution has been made so far. In this paper several 230-kV insulator strings with different porcelain and glass units were simulated using 3-D FEM based software, and their electric fields and voltage distributions were calculated and compared together, to investigate the effect of insulator types on these quantities. Tower and conductors were included in all simulations and also the effect of corona ring on voltage and electric field distribution over insulator strings with different insulator types was investigated. Reported results show the dependency of voltage distribution to insulator material and profile.
V. Abbasi, S. Hemmati, M. Moradi,
Volume 15, Issue 1 (3-2019)
Abstract
Stress grading (SG) layer in cable terminations limits the critical electric field and properties of SG materials are important issues which have to be considered during manufacturing and selecting procedure. In this paper, two different types of (SG) materials are analyzed by both theory and test. According to the applied theory, important parameters as: electrical resistivity, breakdown voltage and thermal conductivity are determined by experiments. Experimental steps are defined in the paper with which theory and experiments are matched together to complete the investigation. The paper discusses electro-thermal breakdown theory and quality of two different SG layers based on the test results. The theory and experimental procedure can be used for prediction of breakdown voltage in cable terminations. The employed method is useful for qualifying the cable terminations by users who want to buy and install heat shrink cable terminations.
S. Hajiaghasi, Z. Rafiee, A. Salemnia, T. Soleymani Aghdam,
Volume 15, Issue 3 (9-2019)
Abstract
Since the insulators of transmission lines are exposed to different environmental conditions, it is important task to study insulators performance under different conditions. In this paper, silicone rubber insulators performance under different environmental conditions including rainy, icy, salt and cement are proposed and exactly is studied. Electric fields (E-fields) and voltage distributions along the insulator under various conditions have been evaluated. Moreover, the corona rings effects on insulator performance under these conditions have been presented. A 230 kV silicone rubber insulator is selected, modeled and simulated with finite element method (FEM) using the COMSOL software. The simulation is repeated for different environmental conditions and efficiency of corona ring for each scenario is evaluated. The results indicate that environmental conditions have a significant effect on the insulator performance and the corona ring somewhat alleviate the adverse effect of environmental conditions on the insulator performance.