Search published articles


Showing 3 results for Artificial Neural Network (ann)

M. H. Lazreg, A. Bentaallah,
Volume 15, Issue 1 (3-2019)
Abstract

This article presents a sensorless five level DTC control based on neural networks using Extended Kalman Filter (EKF) applied to Double Star Induction Machine (DSIM). The application of the DTC control brings a very interesting solution to the problems of robustness and dynamics. However, this control has some drawbacks such as the uncontrolled of the switching frequency and the strong ripple torque. To improve the performance of the system to be controlled, robust techniques have been applied, namely artificial neural networks. In order to reduce the number of sensors used, and thus the cost of installation, Extended Kalman filter is used to estimate the rotor speed. By viewing the simulation results using the MATLAB language for the control. The results of simulations obtained showed a very satisfactory behaviour of the machine.

Jayati Vaish, Anil Kumar Tiwari, Seethalekshmi K.,
Volume 19, Issue 4 (12-2023)
Abstract

In recent years, Microgrids in integration with Distributed Energy Resources (DERs) are playing as one of the key models for resolving the current energy problem by offering sustainable and clean electricity. Selecting the best DER cost and corresponding energy storage size is essential for the reliable, cost-effective, and efficient operation of the electric power system. In this paper, the real-time load data of Bengaluru city (Karnataka, India) for different seasons is taken for optimization of a grid-connected DERs-based Microgrid system. This paper presents an optimal sizing of the battery, minimum operating cost and, reduction in battery charging cost to meet the overall load demand. The optimization and analysis are done using meta-heuristic, Artificial Intelligence (AI), and Ensemble Learning-based techniques such as Particle Swarm Optimization (PSO), Artificial Neural Network (ANN), and Random Forest (RF) model for different seasons i.e., winter, spring & autumn, summer and monsoon considering three different cases. The outcome shows that the ensemble learning-based Random Forest (RF) model gives maximum savings as compared to other optimization techniques.

Aboubakeur Hadjaissa, Mohammed Benmiloud, Khaled Ameur, Halima Bouchenak, Maria Dimeh,
Volume 20, Issue 4 (11-2024)
Abstract

As solar photovoltaic power generation becomes increasingly widespread, the need for photovoltaic emulators (PVEs) for testing and comparing control strategies, such as Maximum Power Point Tracking (MPPT), is growing. PVEs allow for consistent testing by accurately simulating the behavior of PV panels, free from external influences like irradiance and temperature variations. This study focuses on developing a PVE model using deep learning techniques, specifically a Multi-Layer Perceptron (MLP) Artificial Neural Network (ANN) with backpropagation as the learning algorithm. The ANN is integrated with a DC-DC push-pull converter controlled via a Linear Quadratic Regulator (LQR) strategy. The ANN emulates the nonlinear characteristics of PV panels, generating precise reference currents. Additionally, the use of a single voltage sensor paired with a current observer enhances control signal accuracy and reduces the PVE system's hardware requirements. Comparative analysis demonstrates that the proposed LQR-based controller significantly outperforms conventional PID controllers in both steady-state error and response time.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.