M. R. Mosavi, A. Rashidinia,
Volume 13, Issue 3 (9-2017)
Abstract
Differential Global Positioning System (DGPS) provides differential corrections for a GPS receiver in order to improve the navigation solution accuracy. DGPS position signals are accurate, but very slow updates. Improving DGPS corrections prediction accuracy has received considerable attention in past decades. In this research work, the Neural Network (NN) based on the Gaussian Radial Basis Function (RBF) has been developed. In many previous works all parameter of RBF NN are optimizing by evolutionary algorithm such as Particle Swarm Optimization (PSO), but in our approach shape parameter and centers of RBF NN are calculated in better way, in addition, search space for PSO algorithm will be reduced which cause more accurate and faster approach. The obtained results show that RMS has been reduced about 0.13 meter. Moreover, results are tabulated in the tables which verify the accuracy and faster convergence nature of our approach in both on-line and off-line training methods.
Pampa Debnath, Diptadip Barai, Rajorshi Mandal, Ayeshee Sinha, Jeet Saha, Arpan Deyasi,
Volume 20, Issue 2 (6-2024)
Abstract
A novel architecture is proposed in the present paper for detection and monitoring of air pollution at real-time condition following industrial standard, embedded with gas sensors which are able to identify both organic as well as inorganic hazardous contents. A vis-à-vis comparative analysis is carried out with existing literature highlighting cons of most referred circuits, both in component, system and power consumption levels, and a generalized drawback is reported citing their inefficacy for real-time data collection and accuracy level. Detailed review is reported based on qualitative assessments also, and henceforth, justifies the significance of the proposed design; where not only higher ranges of detection are possible, however is also associated with lower power consumption (26.41% and 10.71% respectively compared to the two latest circuits) and finer detection of dust particles even at extremely low concentration. The architecture will help to implicate precautionary steps at real-time condition for controlling the harmful effect in Society.