Showing 8 results for Zare
M. Hajebi, M. Danaeian, E. Zarezadeh,
Volume 13, Issue 3 (September 2017)
Abstract
Using composite right-left handed (CRLH) transmission line concept, a novel miniaturized dual notch band filter (DNBF) is proposed. The suggested DNBF consists of an interdigital transmission line (ITL), split ring resonators (SRRs) and complementary split ring resonators (CSRRs). Since the resonance frequency of the SRRs and CSRRs are quite independent of each other, the dual notch bands of the proposed filter can be separately controlled and shifted by changing the dimension of the SRRs and CSRRs. In this paper, the reject bands are designed for WLAN (2.4 GHz) and WiMAX (3.5 GHz) to reject these frequency bands from the ultra-wide band communication systems. The simulation results show that the transmission response has more than 32 dB rejections near each band. To validate the design concept, the proposed NBPF has been fabricated and tested. Experimental verification is provided and good agreement has been found between simulation and measurement. To the best of our knowledge, the proposed NBPF is more compact in comparison with other reported filters.
F. Tootoonchian, F. Zare,
Volume 14, Issue 3 (September 2018)
Abstract
Disk Type Variable Reluctance (DTVR) resolvers have distinguished performance under run out fault comparing to conventional sinusoidal rotor resolvers. However, their accuracy under inclined rotor fault along with different types of eccentricities includes static and dynamic eccentricities are questioned. Furthermore, due to thin copper wires that are used for signal and excitation coils of resolver there is high risk of short circuit fault in the coils. So, in this study the performance of the sinusoidal rotor DTVR resolver under the mentioned faults are studied. The quality of output voltages along with position error of the sensor is discussed. 3-D time stepping finite element method is used to show the effect of different faults. Finally, the prototype of the studied resolver is constructed and tested. The employed test bed is built in such a way that is able to apply controllable level of different mechanical faults. Good agreement is obtained between the finite element and the experimental results, validating the success of the presented analysis.
S. J. Azhari, M. Zareie,
Volume 15, Issue 2 (June 2019)
Abstract
In this paper, a novel low voltage low power current buffer was presented. The proposed structure was implemented in CMOS technology and is the second generation of OCB (orderly current buffer) called OCBII. This generation is arranged in single input-single output configuration and has modular structure. It is theoretically analyzed and the formulae of its most important parameters are derived. Pre and Post-layout plus Monte Carlo simulations were performed under ±0.75 V by Cadence using TSMC 0.18 µm CMOS technology parameters up to 3rd order. The proposed structure could expand and act as a dual output buffer in which the second output shows extremely high impedance because of its cascode configuration. The results prove that OCBII makes it possible to achieve very low values of input impedance under low supply voltages and low power dissipation. The most important parameters of 1st, 2nd and 3rd orders, i.e. input impedance (Rin), -3 dB bandwidth (BW), power dissipation (Pd) and output impedance (Ro) were found respectively in Pre-layout plus Monte Carlo results as:
1st order: Rin (52.4 Ω), BW (733.7 MHz), Pd (225.6 µW), Ro (105.6 kΩ)
2nd order: Rin (3.8 Ω), BW (576.4 MHz), Pd (307 µW), Ro (106.4 kΩ)
3rd order: Rin (0.34 Ω), BW (566.9 MHz), Pd (535.6 µW), Ro (118.2 kΩ)
And in Post-layout plus Monte Carlo results as:
1st order: Rin (59.9 Ω), BW (609.6 MHz), Pd (212.4 µW), Ro (106.9 kΩ)
2nd order: Rin (11.3 Ω), BW (529.3 MHz), Pd (389.9 µW), Ro (109.8 kΩ)
3rd order: Rin (5.8 Ω), BW (526.5 MHz), Pd (514.5 µW), Ro (125.5 kΩ)
Corner cases simulation results are also provided indicating well PVT insensitivity advantage of the block.
S. H. Montazeri, A. Damaki Aliabad, F. Zare, S. Aghaei,
Volume 17, Issue 1 (March 2021)
Abstract
The direct drive permanent magnet synchronous motor (DD-PMSM) is a suitable choice for high-precision position control applications. Among various control methods of this motor, the vector control approaches especially the field oriented control has a high-performance in the industrial drives. In this method, the components of stator current are controlled independently and as a result, the torque and flux are controlled continuously. Since there are some limitations and constraints in the motor, inverter, and control system, a new anti-windup gain scheduling PID controller based on the adaptive control principles is proposed for the position control loop. In the proposed method, different values are assigned to coefficients of the PID controller according to the position error to achieve high precision. Also, a very high-accuracy encoder and an ARM processor are used for measuring the instantaneous position and implementation of the proposed method, respectively. The simulation and experimental results validate the effectiveness, high accuracy, and good dynamic behavior of the proposed control method.
A. Zakipour, K. Aminzare, M. Salimi,
Volume 18, Issue 3 (September 2022)
Abstract
Considering the presence of different model parameters and controlling variables, as well as the nonlinear nature of DC to AC inverters; stabilizing the closed-loop system for grid current balancing is a challenging task. To cope with these issues, a novel sliding mode controller is proposed for the current balancing of local loads using grid-connected inverters in this paper. The closed-loop system includes two different controlling loops: a current controller which regulates the output current of grid-connected inverter and a voltage controller which is responsible for DC link voltage regulation. The main features of the proposed nonlinear controller are reactive power compensation, harmonic filtering and three-phase balancing of local nonlinear loads. The developed controller is designed based on the state-space averaged modelling its stability and robustness are proved analytically using the Lyapunov stability theorem. The accuracy and effectiveness of proposed controlled approach are investigated through the PC-based simulations in MATLAB/Simulink.
Fatemeh Zare-Mirakabad, Mohammad Hosein Kazemi, Aref Doroudi,
Volume 19, Issue 3 (September 2023)
Abstract
This paper proposes a robust H ∞ -LMI-based primary controller using the Linear Parameter Varying (LPV) modeling for an AC islanded Micro-Grid (IMG). The proposed controller can regulate the frequency and voltage of the IMG under various scenarios, such as load changes, faults, and reconfigurations. Unlike most previous studies that neglected the nonlinearity and uncertainty of the system, this paper represents the system dynamics as a polytopic LPV model in the novel primary control structure. The proposed method computes a state-feedback control by solving the corresponding Linear Matrix Inequalities (LMIs) based on H ∞ performance and stability criteria. The robust primary control is applied to a test IMG in the SIM-POWER environment of MATLAB and evaluated under different scenarios. The simulation results demonstrate the effectiveness and efficiency of the proposed method in maintaining the stability of the frequency and voltage of the IMG.
Fateme Zare, Farid Tootoonchian,
Volume 20, Issue 2 (June 2024)
Abstract
The Recent development of 2-DOF electrical machines leads to increasing need for 2-DOF position sensors. Using a planar sensor instead of two linear ones decreases the complexity, and cost of the employed drive. Therefore, in this paper a new slotless configuration is proposed for the planar resolver, that simplifies the manufacturing of the sensor. Then, the optimal combination of the stator/mover number of coils is determined based on the proposed analytical model. Finally, to reduce the number of integrated parts of the proposed resolver, a new configuration with skewed coils is proposed. The success of the developed model and the presented configuration is validated using three-dimensional finite element analysis.
Eisa Zarepour, Mohammad Reza Mohammadi, Morteza Zakeri-Nasrabadi, Sara Aein, Razieh Sangsari, Leila Taheri, Mojtaba Akbari, Ali Zabihallahpour,
Volume 20, Issue 3 (September 2024)
Abstract
Using mobile phones for medical applications are proliferating due to high-quality embedded sensors. Jaundice, a yellow discoloration of the skin caused by excess bilirubin, is a prevalent physiological problem in newborns. While moderate amounts of bilirubin are safe in healthy newborns, extreme levels are fatal and cause devastating and irreversible brain damage. Accurate tests to measure jaundice require a blood draw or dedicated clinical devices facing difficulty where clinical technology is unavailable. This paper presents a smartphone-based screening tool to detect neonatal hyperbilirubinemia caused by the high bilirubin production rate. A machine learning regression model is trained on a pretty large dataset of images, including 446 samples, taken from newborns' sternum skin in four medical centers in Iran. The learned model is then used to estimate the level of bilirubin. Experimental results show a mean absolute error of 1.807 mg/dl and a correlation of 0.701 between predicted bilirubin by the proposed method and the TSB values as ground truth.