Search published articles


Showing 3 results for Ayatollahi

A Ayatollahi, N Jafarnia Dabanloo, Dc McLernon, V Johari Majd, H Zhang,
Volume 1, Issue 2 (April 2005)
Abstract

Developing a mathematical model for the artificial generation of electrocardiogram (ECG) signals is a subject that has been widely investigated. One of its uses is for the assessment of diagnostic ECG signal processing devices. So the model should have the capability of producing a wide range of ECG signals, with all the nuances that reflect the sickness to which humans are prone, and this would necessarily include variations in heart rate variability (HRV). In this paper we present a comprehensive model for generating such artificial ECG signals. We incorporate into our model the effects of respiratory sinus arrhythmia, Mayer waves and the important very low frequency component in the power spectrum of HRV. We use the new modified Zeeman model for generating the time series for HRV, and a single cycle of ECG is produced using a radial basis function neural network.
S. H Mirhosseini, A. Ayatollahi,
Volume 6, Issue 4 (December 2010)
Abstract

Abstract- A novel low-voltage two-stage operational amplifier employing resistive biasing is presented. This amplifier implements neutralization and correction common mode stability in second stage while employs capacitive dc level shifter and coupling between two stages. The structure reduces the power consumption and increases output voltage swing. The compensation is performed by simple miller method. For each stage an independent common-mode feedback circuits has been used. Simulation results show that power consumption is 2.1 mW at 1V supply. The dc gain of the amplifier is about 70 dB while its output swing is as high as around 1.2V.
M. J. Jahantab, S. Tohidi, Mohammad Reza Mosavi, Ahmad Ayatollahi,
Volume 20, Issue 4 (December (Special Issue on ADLEEE) 2024)
Abstract

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.