C. Lucas , Z. Nasiri-Gheidari , F. Tootoonchian,
Volume 6, Issue 4 (12-2010)
Abstract
In this paper particle swarm optimization (PSO) is used for a design optimization of a linear permanent magnet synchronous motor (LPMSM) considering ultra low thrust force ripples, low magnet consumption, improved efficiency and thrust. The influence of PM material is discussed, too and the modular poles are proposed to achieve the best characteristic. PM dimensions and material, air gap and motor width are chosen as design variables. Finally 2-D finite element analyses validate the optimization results.
M. Mosleh, M. R. Besmi,
Volume 7, Issue 1 (3-2011)
Abstract
This paper presents a new method called vespiary regular hexagonal (VRH) model in order to calculate parasitic capacitance between conductor wire filaments of one turn of coil (OTC) and between conductor wire filaments and liner and also total capacitance of one turn of the helix magneto flux cumulative generator (MCG) coil include single-layer conductor wire filaments in form of rectangular cross-section. In this paper, wire filaments of the coil are separated into many very small similar elementary cells. In this structure, an equilateral lozenge-shape basic cell (ELBC) with two trapezium-shape regions is considered between two adjacent conductor wire filaments in one turn of the generator coil. This method applies to calculate stray capacitance of one turn of the coil with multi conductor wire filaments (CWFs).
J. Soleimani, A. Vahedi, S. M Mirimani,
Volume 7, Issue 4 (12-2011)
Abstract
Recently, Inner permanent magnet (IPM) synchronous machines have been
introduced as a possible traction motor in hybrid electric vehicle (HEV) and traction
applications due to their unique merits. In order to achieve maximum torque per ampere
(MTPA), optimization of the motor geometry parameters is necessary. This paper Presents
a design method to achieve minimum volume, MTPA and minimum value of cogging
torque for traction IPM synchronous machines and simulation in order to extract the output
values of motor is done using 3D-Finite Element Model, that has high level of accuracy and
gives us a better insight of motor performance. Then presents back EMF, power factor,
cogging torque, Flux density, torque per ampere diagram, CPSR (constant power speed
ratio), torque per speed diagram in this IPM synchronous machine. This study can help
designers in design approach of such motors.
S. R. Mousavi-Aghdam, M. R. Feyzi, Y. Ebrahimi,
Volume 8, Issue 1 (3-2012)
Abstract
This paper presents a new design to reduce torque ripple in Switched Reluctance Motors (SRM). Although SRM possesses many advantages in terms of motor structure, it suffers from large torque ripple that causes problems such as vibration and acoustic noise. The paper describes new rotor and stator pole shapes with a non-uniform air gap profile to reduce torque ripple while retaining its average value. An optimization using fuzzy strategy is successfully performed after sensitivity analysis. The two dimensional (2-D) finite element method (FEM) results, have demonstrated validity of the proposed new design.
E. Afjei,
Volume 8, Issue 2 (6-2012)
Abstract
The switched reluctance motor is a singly excited, doubly salient machine which
can be used in generation mode by selecting the proper firing angles of the phases. Due to
its robustness, it has the potential and the ability to become one the generators to be used in
harsh environment. This paper presents an energy conversion by a Switched Reluctance
Generator (SRG) when bifilar converter circuit and discrete position sensors are employed.
As the generator’s speed increases by a prime mover the shape of current waveform
changes in such a way that limits the production of generating voltage. At high speeds, it is
possible for the phase current never reaches the desired value to produce enough back-emf
for sufficient voltage generation, therefore, the output power falls off. In order to remedy
this problem, the phase turn on angle is advanced in a way that the phase commutation
begins sooner. Since one of the advantages of this type of generator is its variable speed
then, the amount of advancing for the turn on angle should be accomplished automatically
to obtain the desired output voltage according to the speed of the generator, meaning, as the
generator speed increases so should the turn on angle and vice versa. In this respect, this
paper introduces an electronic circuit in conjunction with the position sensors and the drive
converter to achieve this task for a desired output voltage when a SRG feeding a resistive
load. To evaluate the generator performance, two types of analysis, namely numerical
technique and experimental studies have been utilized on a 6 by 4, 30 V, SRG. In the
numerical analysis, due to highly non-linear nature of the motor, a three dimensional finite
element analysis is employed, whereas in the experimental study, a proto-type generator
and its circuitries have been built and tested using bifilar converter. A linear analysis of the
current waveform for the generator under different advancements of the turn on angle has
been performed numerically and experimentally and the results are presented.
S. R. Mousavi-Aghdam, M. R. Feyzi,
Volume 10, Issue 3 (9-2014)
Abstract
This paper considers a new switched reluctance motor (SRM) structure aiming at high starting torque with low volume. For some applications such as EVs (Electrical Vehicles), the motor volume and starting torque is a critical point in its design. In many methods, reducing the motor volume causes reduction in starting torque and decreases the motor efficiency. Unlike conventional SRMs, the rotor pole is skewed in the proposed structure along the motor axis. An approximated two-dimensional finite element method (FEM) is used to speed up computational time and some comparisons with three-dimensional FEM are considered for more reliability. Final results show the efficiency of the proposed structure.
H. A. Lari, A. Kiyoumarsi, A. Darijani, B. Mirzaeian Dehkordi, S. M. Madani,
Volume 10, Issue 4 (12-2014)
Abstract
In Permanent-Magnet Synchronous Generators (PMSGs) the reduction of cogging torque is one of the most important problems in their performance and evaluation. In this paper, at first, a direct-drive vertical-axis wind turbine is chosen. According to its nominal value operational point, necessary parameters for the generator is extracted. Due to an analytical method, four generators with different pole-slot combinations are designed. Average torque, torque ripple and cogging torque are evaluated based on finite element method. The combination with best performance is chosen and with the analysis of variation of effective parameters on cogging torque, and introducing a useful method, an improved design of the PMSG with lowest cogging torque and maximum average torque is obtained. The results show a proper performance and a correctness of the proposed method.
A. Darijani, A. Kiyoumarsi, H. A. Lari, B. Mirzaeian Dehkordi, Sh. Bekhrad, S. Rahimi Monjezi,
Volume 11, Issue 1 (3-2015)
Abstract
Permanent-Magnet Synchronous Generators (PMSGs) exhibit high efficiency and power density, and have already been employed in gearless wind turbines. In the gearless wind turbines, due to the removal of the gearbox, the cogging torque is an important issue. Therefore, in this paper, at first, design of a Permanent-Magnet Synchronous Generator for a 2MW gearless horizontal-axis wind turbine, according to torque-speed and capability curves, is presented. For estimation of cogging torque in PMSGs, an analytical method is used. Performance and accuracy of this method is compared with the results of Finite Element Method (FEM). Considering the effect of dominant design parameters, cogging torque is efficiently reduced.
H. Yaghobi, H. Kafash Haghparast,
Volume 11, Issue 3 (9-2015)
Abstract
Synchronous generators are of two type’s salient pole type and round rotor type. The load angle curve of a cylindrical rotor synchronous machine comprises a single sine term only while in salient pole synchronous generators, power-angle characteristic has two terms. The first term is the fundamental component due to field excitation (the same as the cylindrical rotor) and the second term includes the effect of salient pole. In fact, this term is the second harmonic component due to reluctance torque. This paper presents a study on the new design of cylindrical solid rotor synchronous generator. In this new design, rotor of the machine is designed in such a way that the required inductance values are reached to produce reluctance torque, besides electromagnetic torque due to field excitation. In this contribution, a combination of two different ferromagnetic materials is considered in the design of the rotor. In this theory, the tight connection between the different materials is very important from a mechanical point of view. In other words, this new idea and production principal has potential in some areas after some further research and engineering. But this paper is focused on magnetic flux-carrying materials and presents a study of the new design of cylindrical solid rotor synchronous generator (NCG). Then a comparative analysis was made between this new (NCG) and conventional cylindrical solid rotor synchronous generator (CCG) and the effectiveness of the new cylindrical solid rotor from a magnetic point of view is demonstrated. In this paper, mechanical and thermal aspects of design such as vibration did not analyze.
S. Ahmadi, A. Vahedi,
Volume 11, Issue 3 (9-2015)
Abstract
In this paper a multiobjective optimal design method of interior permanent magnet synchronous motor ( IPMSM) for traction applications so as to maximize average torque and to minimize torque ripple has been presented. Based on train motion equations and physical properties of train, desired specifications such as steady state speed, rated output power, acceleration time and rated speed of traction motor are related to each other. By considering the same output power, steady state speed, rated voltage, rated current and different acceleration time for a specified train, multiobjective optimal design has been performed by Broyden–Fletcher–Goldfarb–Shanno (BFGS) method and finite element method (FEM) has been chosen as an analysis tool. BFGS method is one of Quasi Newton methods and is counted in classic approaches. Classic optimization methods are appropriate when FEM is applied as an analysis tool and objective function isn’t expressed in closed form in terms of optimization variables.
R Ilka, Y Alinejad-Beromi, H Yaghobi,
Volume 11, Issue 4 (12-2015)
Abstract
Among all types of electrical motors, permanent magnet synchronous motors (PMSMs) are reliable and efficient motors in industrial applications. Because of their superiority over other kinds of motors, they are replacing conventional electric motors. On the other hand, high-phase PMSMs are good candidates to be used in certain industrial and military projects such as electric vehicles, spacecrafts, naval systems and etc. In these cases, the motor has to be designed with minimum volume and high torque and efficiency. Design optimization can improve their features noticeably, thus reduce volume and enhance performance of motors. In this paper, a new method for optimum design of a five-phase surface-mounted permanent magnet synchronous motor is presented to achieve minimum permanent magnets (PMs) volume with an increased torque and efficiency. Design optimization is performed in search for optimum dimensions of the motor and its permanent magnets using Bees Algorithm (BA). The design optimization results in a motor with great improvement regarding the original motor which is compared with two well-known evolutionary algorithms i.e. GA and PSO. Finally, finite element method simulation is utilized to validate the accuracy of the design.
Mr Y Ebrahimi, Prof M.r Feyzi,
Volume 11, Issue 4 (12-2015)
Abstract
A novel structure of switched reluctance motors (SRMs) is proposed. The proposed structure uses the benefits of the axial flux path, short flux path, segmental rotor, and flux reversal free stator motors all together to improve the torque density of the SRMs. The main geometrical, electrical and physical specifications are presented. In addition, some features of the proposed structure are compared with those of a state-of-the-art radial flux SRM, considered as a reference motor. Then, the proposed structure is modified by employing a higher number of rotor segments than the stator modules and at the same time, reshaped stator modules tips. Achieved results reveal that, compared with the reference motor, the proposed and the modified proposed motors deliver about the same torque with 36.5% and 46.7% lower active material mass, respectively. The efficiency and torque production capability for the extended current densities are also retained. These make the proposed structures a potentially proper candidate for the electric vehicles (EVs) and hybrid electric vehicles (HEVs) as an in-wheel motor.
A. Ejlali, J. Soleimani, A. Vahedi,
Volume 12, Issue 4 (12-2016)
Abstract
Recently, Transverse Flux Permanent Magnet Generators (TFPMGs) have been proposed as a possible generator in direct drive variable speed wind turbines due to their unique merits. Generally, the quality of output power in these systems is lower than multi stage fixed speed systems, because of removing the gears, so it’s important to design these kinds of generators with low ripple and lowest harmful harmonics and cogging torque that is one of the most important terms in increasing the quality of output power of generator. The objective of this paper is introducing a simple design method and optimization of high power TFPMG applied in vertical axis direct drive wind turbine system by lowest possible amplitude of cogging torque and highest possible power factor, efficiency and power density. In order to extract the output values of generator and sensitivity analysis for design and optimization, 3D-Finite element model, has been used. This method has high accuracy and gives us a better insight of generator performance and presents back EMF, cogging torque, flux density and FFT of this TFPMG. This study can help designers in design approach of such motors.
S. R. Mousavi-Aghdam, M. R. Feyzi, N. Bianchi,
Volume 13, Issue 1 (3-2017)
Abstract
This paper presents analysis and comparative study of a novel high-torque three-phase switched reluctance motor (SRM) with magnetically isolated stator segments. In the proposed SRM, each segment has a concentric winding located on the center body of it and two diametrically opposite windings which form the motor phase. There are four salient poles in the stator segment. Two of them share their flux path in the center body of the segment. The rotor has a solid structure including twenty two salient poles. In this unique SRM, stator segments topology, number of the stator segments poles and the rotor poles, and angular distance of the stator segments are selected so that the motor properly operates in both directions. Two-phase design with different pole combination is also possible. During operation, there are short flux paths along two adjacent rotor poles and excited segment poles. Therefore, the proposed SRM has all benefits of the short flux path structures. The principle and fundamentals of the proposed SRM design are detailed in the paper. The motor is analysed using finite element method (FEM) and some comparisons are reasonably carried out with other SRM configurations. Finally, a prototype motor is built and experimental results validate the performance predictions in the proposed motor.
M. E. Moazzen, S. A. Gholamian, M. Jafari-Nokandi,
Volume 13, Issue 2 (6-2017)
Abstract
Permanent magnet synchronous generators (PMSG) have a huge potential for direct-drive wind power applications. Therefore, optimal design of these generators is necessary to maximize their efficiency and to reduce their manufacturing cost and total volume. In this paper, an optimal design of a six-phase 3.5 KW direct-drive PMSG to generate electricity for domestic needs is performed. The aim of optimal design is to reduce the manufacturing cost, losses and total volume of PMSG. To find the best design, single/multi-objective design optimization is carried out. Cuckoo optimization algorithm (COA) is adopted to solve the optimization problem. Comparison between the results of the single-objective and multi-objective models shows that simultaneous optimization of manufacturing cost, losses and total volume leads to more suitable design for PMSG. Finally, finite-element method (FEM) is employed to validate the optimal design, which show a good agreement between the theoretical work and simulation results.