Search published articles



S. M. Hoseini, N. Vasegh, A. Zangeneh,
Volume 16, Issue 2 (6-2020)
Abstract

In this paper, a robust local controller has been designed to balance the power for distributed energy resources (DERs) in an islanded microgrid. Three different DER types are considered in this study; photovoltaic systems, battery energy storage systems, and synchronous generators. Since DER dynamics are nonlinear and uncertain, which may destabilize the power system or decrease the performance, distributed robust nonlinear controllers are designed for the DERs. They are based on the Lyapunov stabilization theory and super-twisting integral sliding mode control which guarantees system stability and optimality simultaneously. The reference signals for each DER are generated by a supervisory controller as a power management system. The controllers proposed in this work are robust, have fast response times, and most importantly, the control signals satisfy physical system constraints. The designed controller stability and effectiveness are also verified using numerical simulations.

M. Sedighizadeh, S. M. M. Alavi, A. Mohammadpour,
Volume 16, Issue 3 (9-2020)
Abstract

Regarding the advances in technology and anxieties around high and growing prices of fossil fuels, government incentives increase to produce cleaner and sustainable energy through distributed generations. This makes trends in the using microgrids which consist of electric demands and different distributed generations and energy storage systems. The optimum operation of microgrids with considering demand-side management increases efficiency and reliability and maximize the advantages of using distributed generations. In this paper, the optimal operation scheduling and unit commitment of generation units installed in a microgrid are investigated. The microgrid consists of technologies based on natural gas that are microturbine and phosphoric acid fuel cell and technologies based on renewable energy, including wind turbine and photovoltaic unit along with battery energy storage system and plug-in electric vehicle commercial parking lot. The goal of the paper is to solve a multi-objective problem of maximizing revenues of microgrid operator and minimizing emissions. This paper uses an augmented epsilon constraint method for solving the multi-objective problem in a stochastic framework and also implements a fuzzy-based decision-maker for choosing the suitable optimal solution amid Pareto front solutions. This new model implements the three type of the price-based and incentive-based demand response program. It also considers the generation reserve in order to enhance the flexibility of operations. The presented model is tested on a microgrid and the results demonstrate the efficacy of the proposed model economically and environmentally compared to other methods.

Hamid Salarvand, Meysam Doostizadeh, Farhad Namdari,
Volume 18, Issue 4 (12-2022)
Abstract

Owing to the portability and flexibility of mobile energy storage systems (MESSs), they seem to be a promising solution to improve the resilience of the distribution system (DS). So, this paper presents a rolling optimization mechanism for dispatching MESSs and other resources in microgrids in case of a natural disaster occurrence. The proposed mechanism aims to minimize the total system cost based on the updated information of the status of the DS and transportation network (TN). In addition, the characteristics of the protection system in DS (i.e., relays with fixed protection settings), the constraints related to the protection coordination are examined under pre- and post-event conditions. The coordinated scheduling at each time step is formulated as a two-stage stochastic mixed-integer linear program (MILP) with temporal-spatial and operation constraints. The proposed model is carried out on the Sioux Falls TN and the IEEE 33-bus test system. The results demonstrate the effectiveness of MESS mobility in enhancing DS resilience due to the coordination of mobile and stationary resources.

Mitesh Kumar, Shivam Shivam,
Volume 18, Issue 4 (12-2022)
Abstract

The idea of a microgrid is created by utilizing more diverse ac or dc distributed generation (DG) sources along with an energy storage system (ESS) and loads. The most efficient and reliable selection of ac and dc microgrids is a hybrid ac/dc microgrid. The hybrid microgrid largely overcomes the shortcomings of standalone ac or dc microgrids. A bidirectional interlinking converter (BIC) is utilized in the interface for controlling power flow between subgrids. In order to improve voltage and frequency regulation with effective power sharing, the BIC based on the proposed control scheme is implemented for power flow between ac and dc sub-grid in Islanding mode. The control scheme is modified based on conventional droop control with voltage and frequency variation in order to improve bus voltage and frequency regulation with effective power sharing for intermittent sources. The operation of the islanded hybrid ac/dc microgrid is performed with solar, wind, and energy storage system under variable generation and load conditions. In order to make robustness of the system, there are considered different cases for generation and load scenarios. In the transient state, the overshoot and settling time of frequency and voltage are improved, as well as the frequency and voltage regulations are found within the permissible limit in the steady state. Furthermore, the corresponding variations are shown in tabular form in the simulation result. The actual data of solar irradiance and wind speed have been taken from the National Renewable Energy Laboratory. The performance of the system is verified in MATLAB/Simulink environment.
 



Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.