Search published articles


Showing 443 results for Ha

H. Shateri, S. Jamali,
Volume 2, Issue 3 (October 2006)
Abstract

This paper presents the effects of instrument transformers connection points on the measured impedance by distance relays in the presence of Flexible Alternating Current Transmission System (FACTS) devices with series connected branch. Distance relay tripping characteristic itself depends on the power system structural conditions, pre-fault operational conditions, and especially the ground fault resistance. The structural and controlling parameters of FACTS devices as well as the connection points of instrument transformers affect the ideal tripping characteristic of distance relay. This paper presents a general set of equations to evaluate the measured impedance at the relaying point for a general model of FACTS devices to consider different affecting parameters.
A. Badri, S. Jadid, M. Parsa-Moghaddam,
Volume 3, Issue 1 (April 2007)
Abstract

Unlike perfect competitive markets, in oligopoly electricity markets due to strategic producers and transmission constraints GenCos may increase their own profit through strategic biddings. This paper investigates the problem of developing optimal bidding strategies of GenCos considering participants’ market power and transmission constraints. The problem is modeled as a bi-level optimization that at the first level each GenCo maximizes its payoff through strategic bidding and at the second level, in order to consider transmission constraints a system dispatch is accomplished through an OPF problem. The AC power flow model is used for proposed OPF. Here it is assumed that each GenCo uses linear supply function model for its bidding and has information about initial bidding of other competitors. The impact of optimal biddings on market characteristics as well as GenCos’ payoffs are investigated and compared with perfect competitive markets where all the participants bid with their marginal costs. Furthermore, effects of exercising market power due to transmission constraints as well as different biddings of strategic generators on GenCos’ optimal bidding strategies are presented. Finally IEEE-30 bus test system is used for case study to demonstrate simulation results.
A. Hajizadeh, M. Aliakbar-Golkar,
Volume 3, Issue 1 (April 2007)
Abstract

The operation of Fuel Cell Distributed Generation (FCDG) systems in distribution systems is introduced by modeling, controller design, and simulation study of a Solid Oxide Fuel Cell (SOFC) distributed generation (DG) system. The physical model of the fuel cell stack and dynamic models of power conditioning units are described. Then, suitable control architecture based on fuzzy logic control for the overall system is presented in order to active power control and power quality improvement. A MATLAB/Simulink simulation model is developed for the SOFC DG system by combining the individual component models and the controllers designed for the power conditioning units. Simulation results are given to show the overall system performance including active power control and voltage regulation capability of the distribution system.
D. Arab-Khaburi, F. Tootoonchian, Z. Nasiri-Gheidari,
Volume 3, Issue 1 (April 2007)
Abstract

Because of temperature independence, high resolution and noiseless outputs, brushless resolvers are widely used in high precision control systems. In this paper, at first dynamic performance characteristics of brushless resolver, considering parameters identification are presented. Then a mathematical model based on d-q axis theory is given. This model can be used for studying the dynamic behavior of the resolver and steady state model is obtained by using dynamic model. The main object of this paper is to present an approach to identify electrical and mechanical parameters of a brushless resolver based on DC charge excitation and weight, pulley and belt method, respectively. Finally, the model of resolver based on the obtained parameters is simulated. Experimental results approve the validity of proposed method.
S. Olyaee, Sh. Mohammad-Nejad,
Volume 3, Issue 3 (October 2007)
Abstract

A new heterodyne nano-displacement with error reduction is presented. The main errors affecting the displacement accuracy of the nano-displacement measurement system including intermodulation distortion error, cross-talk error, cross-polarization error and phase detection error are calculated. In the designed system, a He-Ne laser having three-longitudinal-mode is considered as the stabilized source. The free spectral range of the 35cm laser cavity is about 435-MHz at 632.8-nm wavelength, which a secondary beat frequency equal to 300-kHz is produced by combining the reference and measurement beams. The resolution of the displacement measurement resulting from intermodulation distortion, cross-talk and cross-polarization errors is limited to 18-pm. Also, the phase detection uncertainty causes an error of only 5.9-pm in the displacement measurement. Furthermore, frequency-path models of two- and three-longitudinal-mode laser interferometers are modeled as the ac interference, ac reference, dc interference and optical power terms. A comparison study between two- and three-longitudinal-mode laser interferometers confirms that the performance of the designed system is considerably improved.
A. Hajiaboli, Hodjat-Kashani, M. Omidi,
Volume 3, Issue 3 (October 2007)
Abstract

This paper presents a novel implementation of an electromagnetically coupled patch antenna using air gap filled substrates to achieve the maximum bandwidth. We also propose an efficient modeling technique using the FDTD method which can substantially reduce the simulation cost for modeling the structure. The simulated results have been compared with measurement to show the broadband behavior of the antenna and the accuracy of the proposed modeling technique. The measured results show a 16% of VSWR<2 bandwidth which is considerable considering the inherent bandwidth limitations in microstrip antenna technology.
F. Bagheri, H. Khaloozadeh, K. Abbaszadeh,
Volume 3, Issue 3 (October 2007)
Abstract

This paper presents a parametric low differential order model, suitable for mathematically analysis for Induction Machines with faulty stator. An adaptive Kalman filter is proposed for recursively estimating the states and parameters of continuous–time model with discrete measurements for fault detection ends. Typical motor faults as interturn short circuit and increased winding resistance are taken into account. The models are validated against winding function induction motor modeling which is well known in machine modeling field. The validation shows very good agreement between proposed method simulations and winding function method, for short-turn stator fault detection.
A. Halvaei-Niasar, A. Vahedi, H. Moghbelli,
Volume 3, Issue 3 (October 2007)
Abstract

This paper presents an original study on the generated torque ripples of phase commutation in the Four-Switch, Three-Phase Inverter (FSTPI) Brushless DC (BLDC) motor drive which is suitable for low cost applications. Analytic values of torque ripple and commutation duration are obtained for different operation conditions. Moreover, limitation on the speed range operation caused from splitting of the DC-link voltage is shown exactly. Then a novel current control technique is developed to minimize the commutation torque ripple for a wide speed range. The technique proposed here is based on a strategy that the current slopes of the rising and the decaying phases during the commutation intervals can be equalized by proper duty-ratios at commutations. Finally, the validity of the proposed analysis and developed torque ripple reduction technique are verified via simulation.
R. Noroozian, M. Abedi, G. B. Gharehpetian, S. H. Hosseini,
Volume 3, Issue 3 (October 2007)
Abstract

This paper describes a DC isolated network which is fed with Distributed Generation (DG) from photovoltaic (PV) renewable sources for supplying unbalanced AC loads. The battery energy storage bank has been connected to the DC network via DC/DC converter to control the voltage of the network and optimize the operation of the PV generation units. The PV arrays are connected to the DC network via its own DC/DC converter to ensure the required power flow. The unbalanced AC loads are connected to the DC network via its own DC/AC converter. This paper proposes a novel control strategy for storage converter which has a DC voltage droop regulator. Also a novel control system based on Park rotating frame has been proposed for DC/AC converters. In this paper, the proposed operation method is demonstrated by simulation of power transfer between PV arrays, unbalanced AC loads and battery unit. The simulation results based on PSCAD/EMTDC software show that DC isolated distribution system including PV generation systems can provide the high power quality to supplying unbalanced AC loads.
M. Eghtedari, M.-H. Kahaei,
Volume 4, Issue 1 (April 2008)
Abstract

In this paper, the nonlinear lattice-Hammerstein filter and its properties are derived. It is shown that the error signals are orthogonal to the input signal and also backward errors of different stages are orthogonal to each other. Numerical results confirm all the theoretical properties of the lattice-Hammerstein structure.
A. Falahati, M.-R. Ardestani,
Volume 4, Issue 1 (April 2008)
Abstract

A low complexity dynamic subcarrier and power allocation methodology for downlink communication in an OFDM-based multiuser environment is developed. The problem of maximizing overall capacity with constraints on total power consumption, bit error rate and data rate proportionality among users requiring different QOS specifications is formulated. Assuming perfect knowledge of the instantaneous channel gains for all users, a new simple algorithm is developed to solve the mentioned problem. We compare the sum capacity, proportionality, and computational complexity of the proposed algorithm with the one presented by Wong et al. Numerical results demonstrate that the proposed algorithm offers a performance comparable with Wong’s algorithm, yet complexity remains low and proportionality constraint will be tightly satisfied. As well, the proposed algorithm can provide a flexible trade-off between complexity, capacity and proportionality constraint.
A.-R. Zirak, M. Khademi, M.-S. Mahloji,
Volume 4, Issue 1 (April 2008)
Abstract

We present an efficient method for the reduction of model equations in the linearized diffuse optical tomography (DOT) problem. We first implement the maximum a posteriori (MAP) estimator and Tikhonov regularization, which are based on applying preconditioners to linear perturbation equations. For model reduction, the precondition is split into two parts: the principal components are considered as reduced size preconditioners applied to linear perturbation equations while the less important components are marginalized as noise. Simulation results illustrate that the new proposed method improves the image reconstruction performance and localizes the abnormal section well with a better computational efficiency.
S. Jamali , A. Parham,
Volume 4, Issue 3 (July 2008)
Abstract

This paper presents an algorithm for adaptive determination of the dead time

during transient arcing faults and blocking automatic reclosing during permanent faults on

overhead transmission lines. The discrimination between transient and permanent faults is

made by the zero sequence voltage measured at the relay point. If the fault is recognised as

an arcing one, then the third harmonic of the zero sequence voltage is used to evaluate the

extinction time of the secondary arc and to initiate reclosing signal. The significant

advantage of this algorithm is that it uses an adaptive threshold level and therefore its

performance is independent of fault location, line parameters and the system operating

conditions. The proposed algorithm has been successfully tested under a variety of fault

locations and load angles on a 400KV overhead line using Electro-Magnetic Transient

Program (EMTP). The test results validate the algorithm ability in determining the

secondary arc extinction time during transient faults as well as blocking unsuccessful

automatic reclosing during permanent faults.


M. Hariri, S. B. Shokouhi, N. Mozayani,
Volume 4, Issue 3 (July 2008)
Abstract

Dealing with uncertainty is one of the most critical problems in complicated

pattern recognition subjects. In this paper, we modify the structure of a useful Unsupervised

Fuzzy Neural Network (UFNN) of Kwan and Cai, and compose a new FNN with 6 types of

fuzzy neurons and its associated self organizing supervised learning algorithm. This

improved five-layer feed forward Supervised Fuzzy Neural Network (SFNN) is used for

classification and identification of shifted and distorted training patterns. It is generally

useful for those flexible patterns which are not certainly identifiable upon their features. To

show the identification capability of our proposed network, we used fingerprint, as the most

flexible and varied pattern. After feature extraction of different shapes of fingerprints, the

pattern of these features, “feature-map”, is applied to the network. The network first

fuzzifies the pattern and then computes its similarities to all of the learned pattern classes.

The network eventually selects the learned pattern of highest similarity and returns its

specific class as a non fuzzy output. To test our FNN, we applied the standard (NIST

database) and our databases (with 176×224 dimensions). The feature-maps of these

fingerprints contain two types of minutiae and three types of singular points, each of them

is represented by 22×28 pixels, which is less than real size and suitable for real time

applications. The feature maps are applied to the FNN as training patterns. Upon its setting

parameters, the network discriminates 3 to 7 subclasses for each main classes assigned to

one of the subjects.


D. Arab-Khaburi, F. Tootoonchian, Z. Nasiri-Gheidari,
Volume 4, Issue 3 (July 2008)
Abstract

A mathematical model based on d-q axis theory and dynamic performance characteristic of brushless resolvers is discussed in this paper. The impact of rotor eccentricity on the accuracy of position in precise applications is investigated. In particular, the model takes the stator currents of brushless resolver into account. The proposed model is used to compute the dynamic and steady state equivalent circuit of resolvers. Finally, simulation results are presented. The validity and usefulness of the proposed method are thoroughly verified with experiments.
M. R. Aghamohammadi,
Volume 4, Issue 3 (July 2008)
Abstract

This paper proposes a novel approach for generation scheduling using sensitivity

characteristic of a Security Analyzer Neural Network (SANN) for improving static security

of power system. In this paper, the potential overloading at the post contingency steadystate

associated with each line outage is proposed as a security index which is used for

evaluation and enhancement of system static security. A multilayer feed forward neural

network is trained as SANN for both evaluation and enhancement of system security. The

input of SANN is load/generation pattern. By using sensitivity characteristic of SANN,

sensitivity of security indices with respect to generation pattern is used as a guide line for

generation rescheduling aimed to enhance security. Economic characteristic of generation

pattern is also considered in the process of rescheduling to find an optimum generation

pattern satisfying both security and economic aspects of power system. One interesting

feature of the proposed approach is its ability for flexible handling of system security into

generation rescheduling and compromising with the economic feature with any degree of

coordination. By using SANN, several generation patterns with different level of security

and cost could be evaluated which constitute the Pareto solution of the multi-objective

problem. A compromised generation pattern could be found from Pareto solution with any

degree of coordination between security and cost. The effectiveness of the proposed

approach is studied on the IEEE 30 bus system with promising results.


A. Moharampour, J. Poshtan, A. Khaki-Sedigh,
Volume 4, Issue 3 (July 2008)
Abstract

In this paper, after defining pure proportional navigation guidance in the 3-

dimensional state from a new point of view, range estimation for passive homing missiles is

explained. Modeling has been performed by using line of sight coordinates with a particular

definition. To obtain convergent estimates of those state variables involved particularly in

range channel and unavailable from IR trackers, nonlinear filters such as sequential U-D

extended Kalman filter and Unscented Kalman filter in modified spherical coordinate

combined with a modified proportional navigation guidance law are proposed. Simulation

results indicate that the proposed tracking filters in conjunction with the dual guidance law

are able to provide the convergence of the range estimate for both maneuvering and nonmaneuvering

targets.


M. Mahdavi, Sh. Samavi, N. Zaker, M. Modarres-Hashemi,
Volume 4, Issue 3 (July 2008)
Abstract

In this paper we present a new accurate steganalysis method for the LSB

replacement steganography. The suggested method is based on the changes that occur in the

histogram of an image after the embedding of data. Every pair of neighboring bins of a

histogram are either inter-related or unrelated depending on whether embedding of a bit of

data in the image could affect both bins or not. We show that the overall behavior of all

inter-related bins, when compared with that of the unrelated ones, could give an accurate

measure for the amount of the embedded data. Both analytical analysis and simulation

results show the accuracy of the proposed method. The suggested method has been

implemented and tested for over 2000 samples and compared with the RS Steganalysis

method. Mean and variance of error were 0.0025 and 0.0037 for the suggested method

where these quantities were 0.0070 and 0.0182 for the RS Steganalysis. Using 4800

samples, we showed that the performance of the suggested method is comparable with

those of the RS steganalysis for JPEG filtered images. The new approach is applicable for

the detection of both random and sequential LSB embedding.


R. Kharel, K. Busawon, Z. Ghassemlooy,
Volume 4, Issue 4 (October 2008)
Abstract

In this paper, we propose a new chaos-based communication scheme using the observers. The novelty lies in the masking procedure that is employed to hide the confidential information using the chaotic oscillator. We use a combination of the addition and inclusion methods to mask the information. The performance of two observers, the proportional observer (P-observer) and the proportional integral observer (PI-observer) is compared that are employed as receivers for the proposed communication scheme. We show that the P-observer is not suitable scheme since it imposes unpractical constraints on the messages to be transmitted. On the other hand, we show that the PI-observer is the better solution because it allows greater flexibility in choosing the gains of the observer and does not impose any unpractical restrictions on the message.
Gh. R. Karimi, and S. Mirzakuchaki,
Volume 4, Issue 4 (October 2008)
Abstract

During the past few years, a lot of work has been done on behavioral models and simulation tools. But a need for modeling strategy still remains. The VHDL-AMS language supports the description of analog electronic circuits using Ordinary Differential Algebraic Equations (ODAEs), in addition to its support for describing discrete-event systems. For VHDL-AMS to be useful to the analog design community, efficient semiconductor device models must be available. In this paper, potential merits of the new IEEE VHDL-AMS standard in the field of modeling semiconductor devices are discussed. The device models for diodes and the principles, techniques, and methodology used to achieve the design of an analytical third generation Spice transistor MOS model named EKV are presented. This is done by taking into account the thermoelectrical effect in VHDL-AMS, and with relevant parameters set to match a deep submicron technology developed in VHDL-AMS. The models were validated using System Vision from Mentor Graphics.

Page 2 from 23     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.