Search published articles


Showing 13 results for Tan

J. Poshtan, H. Mojallali,
Volume 1, Issue 1 (January 2005)
Abstract

We give a general overview of the state-of-the-art in subspace system identification methods. We have restricted ourselves to the most important ideas and developments since the methods appeared in the late eighties. First, the basis of linear subspace identification are summarized. Different algorithms one finds in literature (Such as N4SID, MOESP, CVA) are discussed and put into a unifying framework. Further, a comparison between subspace identification and prediction error methods is made on the basis of computational complexity and precision of methods by applying them to a glass tube manufacturing process.
F. Hojjat Kashani, A. A. Lotfi Neyestanak, K. Barkeshli,
Volume 1, Issue 2 (April 2005)
Abstract

A modified circular patch antenna design has been proposed in this paper, the bandwidth of this antenna is optimized using the genetic algorithm (GA) based on fuzzy decision-making. This design is simulated with HP HFSS Program that based on finite element method. This method is employed for analysis at the frequency band of 1.4 GHz- 2.6 GHz. It gives good impedance bandwidth of the order of 15.5% at the frequency band of 1.67GHz- 1.95GHz and 10.6% at 2.23GHz- 2.48GHz. It means that impedance bandwidth increases above 4.9% than the impedance bandwidth of ordinary circular patch antennas and band width rise from 1.78GHz- 1.98GHz (10.6%) to 1.67GHz- 1.95GHz (15.5%) and 2.23GHz- 2.48GHz (10.6%). The antenna fabricated with two slots on circular patch antenna. The measured results of the optimized antenna validate a high compatibility between the simulation and the measurements.
A. Falahati, M.-R. Ardestani,
Volume 4, Issue 1 (April 2008)
Abstract

A low complexity dynamic subcarrier and power allocation methodology for downlink communication in an OFDM-based multiuser environment is developed. The problem of maximizing overall capacity with constraints on total power consumption, bit error rate and data rate proportionality among users requiring different QOS specifications is formulated. Assuming perfect knowledge of the instantaneous channel gains for all users, a new simple algorithm is developed to solve the mentioned problem. We compare the sum capacity, proportionality, and computational complexity of the proposed algorithm with the one presented by Wong et al. Numerical results demonstrate that the proposed algorithm offers a performance comparable with Wong’s algorithm, yet complexity remains low and proportionality constraint will be tightly satisfied. As well, the proposed algorithm can provide a flexible trade-off between complexity, capacity and proportionality constraint.
A. Moharampour, J. Poshtan, A. Khaki-Sedigh,
Volume 4, Issue 3 (July 2008)
Abstract

In this paper, after defining pure proportional navigation guidance in the 3-

dimensional state from a new point of view, range estimation for passive homing missiles is

explained. Modeling has been performed by using line of sight coordinates with a particular

definition. To obtain convergent estimates of those state variables involved particularly in

range channel and unavailable from IR trackers, nonlinear filters such as sequential U-D

extended Kalman filter and Unscented Kalman filter in modified spherical coordinate

combined with a modified proportional navigation guidance law are proposed. Simulation

results indicate that the proposed tracking filters in conjunction with the dual guidance law

are able to provide the convergence of the range estimate for both maneuvering and nonmaneuvering

targets.


A. Moharampour, J. Poshtan, A. Khaki Sedigh ,
Volume 6, Issue 1 (March 2010)
Abstract

When a detector sensitive to the target plume IR seeker is used for tracking airborne targets, the seeker tends to follow the target hot point which is a point farther away from the target exhaust and its fuselage. In order to increase the missile effectiveness, it is necessary to modify the guidance law by adding a lead bias command. The resulting guidance is known as target adaptive guidance (TAG). First, the pure proportional navigation guidance (PPNG) in 3-dimensional state is explained in a new point of view. The main idea is based on the distinction between angular rate vector and rotation vector conceptions. The current innovation is based on selection of line of sight (LOS) coordinates. A comparison between two available choices for LOS coordinates system is proposed. An improvement is made by adding two additional terms. First term includes a cross range compensator which is used to provide and enhance path observability, and obtain convergent estimates of state variables. The second term is new concept lead bias term, which has been calculated by assuming an equivalent acceleration along the target longitudinal axis. Simulation results indicate that the lead bias term properly provides terminal conditions for accurate target interception.
F. Hunaini, I. Robandi, I. N. Sutantra,
Volume 11, Issue 1 (March 2015)
Abstract

Steer-by-wire is the electrical steering systems on vehicles that are expected with the development of an optimal control system can improve the dynamic performance of the vehicle. This paper aims to optimize the control systems, namely Fuzzy Logic Control (FLC) and the Proportional, Integral and Derivative (PID) control on the vehicle steering system using Imperialist Competitive Algorithm (ICA). The control systems are built in a cascade, FLC to suppress errors in the lateral motion and the PID control to minimize the error in the yaw motion of the vehicle. FLC is built has two inputs (error and delta error) and single output. Each input and output consists of three Membership Function (MF) in the form of a triangular for language term "zero" and two trapezoidal for language term "negative" and "positive". In order to work optimally, each MF optimized using ICA to get the position and width of the most appropriate. Likewise, in the PID control, the constant at each Proportional, Integral and Derivative control also optimized using ICA, so there are six parameters of the control system are simultaneously optimized by ICA. Simulations performed on vehicle models with 10 Degree Of Freedom (DOF), the plant input using the variables of steering that expressed in the desired trajectory, and the plant outputs are lateral and yaw motion. The simulation results showed that the FLC-PID control system optimized by using ICA can maintain the movement of vehicle according to the desired trajectory with lower error and higher speed limits than optimized with Particle Swarm Optimization (PSO).
S. Tannaz, T. Sedghi,
Volume 14, Issue 2 (June 2018)
Abstract

In this article, a fabulous method for database retrieval is proposed.  The multi-resolution modified wavelet transform for each of image is computed and the standard deviation and average are utilized as the textural features. Then, the proposed modified bit-based color histogram and edge detectors were utilized to define the high level features. A feedback-based dynamic weighting of shape, color and textural features composition produce a resistant feature vectors for image retrieval and recall. A comprehensive and unified matching scheme based on matrix error rate technique was accomplished for similarity of image and retrieval procedure. The feature vectors size in our algorithm is the least one evaluated to the different techniques. Furthermore, the calculation time of previously published techniques is much more than the presented algorithm which is a benefit in proposed retrieval method. The experimental results illustrates that novel algorithm obtains more precious in retrieval and the efficiency in evaluating with the other techniques and algorithms at Corel color image database.

M. Monemizadeh, H. Fehri, Gh. Abed Hodtani, S. Hajizadeh,
Volume 16, Issue 2 (June 2020)
Abstract

Communication in the presence of a priori known interference at the encoder has gained great interest because of its many practical applications. In this paper, additive exponential noise channel with additive exponential interference (AENC-AEI) known non-causally at the transmitter is introduced as a new variant of such communication scenarios. First, it is shown that the additive Gaussian channel with a priori known interference at the encoder when the transmitter suffers from a fast-varying phase noise can be modeled by the AENC-AEI. Then, capacity bounds for this channel under a non-negativity constraint as well as a mean value constraint on input are derived. Finally, it is shown both analytically and numerically that the upper and lower bounds coincide at high signal to noise ratios (SNRs), and therefore, the capacity of the AENC-AEI at high SNRs is obtained. Interestingly, this high SNR-capacity has a simple closed-form expression and is independent of the interference mean, analogous to its Gaussian counterpart.

B. Mamipour Matanag, N. Rostami, S. Tohidi,
Volume 17, Issue 2 (June 2021)
Abstract

This paper proposes a new method for direct control of active power and stator flux of permanent magnet synchronous generator (PMSG) used in the wind power generation system. Active power and stator flux are controlled by the proposed discrete time algorithm. Despite the commonly used vector control methods, there is no need for inner current control loops. To decrease the errors between reference and measured values of active power and stator flux, the space vector modulation (SVM) is used, which results in a constant switching frequency. Compared to vector control, the proposed direct control method has advantages such as higher dynamic response due to elimination of inner current control loops and no need to coordinate system transformation blocks as well as the PI controllers and their adjustment. Moreover, permanent magnet flux vector and several machine parameters such as stator inductances are not required which can improve the robustness of the control system. The proposed method can be used in both types of surface-mounted and interior PMSGs. The effectiveness of the proposed method in comparison to the vector control method with optimized PI coefficients by the particle swarm algorithm is evaluated. Simulation results performed in MATLAB/Simulink software show that higher dynamic response with lower active power and the stator flux ripple are achieved with the proposed method.

Mon Prakash Upadhyay, Arjun Deo, Ajitanshu Vedratnam ,
Volume 21, Issue 1 (March 2025)
Abstract

This paper provides an overview of the current innovations in Building Integrated Photovoltaic Thermal Systems. This paper briefly describes varying performance evaluation techniques, optimisation techniques, and the environmental impact and cost implication of Building Integrated Photovoltaic Thermal systems. The results reveal high energy-pin efficiency with Building Integrated Photovoltaic Thermal systems of over 50% and more efficient than when the two systems are incorporated separately. Exergy analysis is a more insightful means of analyzing system effectiveness than energy analysis. The paper covers the current algorithms for various optimisation algorithms such as Genetic Algorithms and Particle Swarm Optimisation that provide enhanced utilization improvements. An evaluation of the environmental impact of Building Integrated Photovoltaic Thermal in terms of carbon dioxide emission reduction and building energy optimisation is made. The results of the life cycle cost studies show that, even though the initial cost is higher than conventional solutions, the overall economic profit is more significant in the future. Some of the challenges described in the paper include increased initial costs and sophisticated integration procedures. In contrast, possible future developments include new materials, Building Integrated Photovoltaic Thermal system standardization, and integration in smart grids. This review is intended to be a state-of-the-art source of information for researchers, engineers, architects, and policymakers involved in enhancing sustainable building technologies using building-integrated photovoltaic thermal systems.
Jia Wen Tang, Chin Leong Wooi, Wen Shan Tan, Nur Hazirah Zaini, Yuan Kang Wu, Syahrun Nizam Bin Md Arshad@hashim,
Volume 21, Issue 2 (Special Issue on the 1st International Conference on ELECRiS 2024 Malaysia - June 2025)
Abstract

Photovoltaic (PV) energy is increasingly recognized as an environmentally friendly source of renewable energy. Integrating PV systems into power grids involves power electronic inverters, adding complexity and evolving traditional grids into smarter systems. Ensuring the reliability of decentralized PV generation is crucial, particularly as PV systems are often exposed to extreme weather conditions. This study investigates the impact of temperature and solar radiation on the performance of a PV array, focusing on key characteristics such as open-circuit voltage (VOC), short-circuit current (ISC), and maximum power (PMAX). Using PSCAD/EMTDC simulations, the study analyses these characteristics under varying temperatures (5°C to 45°C) and radiation levels (200 W/m² to 1200 W/m²). Results indicate that VOC increases with higher irradiance but decreases with higher temperatures. ISC increases with both higher radiation and temperature, while PMAX is optimized at high irradiance and low temperatures. The impulse withstand voltage (Vimp), a critical factor for PV system reliability, is assessed according to the PD CLC/TS 50539-12 standard. Findings reveal that at low temperatures and high radiation, the Vimp requirement is highest, emphasizing the need for robust voltage protection in PV systems. These insights underscore the importance of considering local climate conditions and implementing effective thermal management to enhance the performance and reliability of PV systems.
Kumuthawathe Ananda-Rao, Steven Taniselass, Afifah Shuhada Rosmi, Aimi Salihah Abdul Nasir, Nor Hanisah Baharudin, Indra Nisja,
Volume 21, Issue 2 (Special Issue on the 1st International Conference on ELECRiS 2024 Malaysia - June 2025)
Abstract

This study presents a Fuzzy Logic Controller (FLC)-based Maximum Power Point Tracking (MPPT) system for solar Photovoltaic (PV) setups, integrating PV panels, a boost converter, and battery storage. While FLC is known for its robustness in PV systems, challenges in battery charging and discharging efficiency can affect performance. The research addresses these challenges by optimizing battery charging, preventing overcharging, and enhancing overall system efficiency. The FLC MPPT system is designed to regulate the battery's State of Charge (SOC) while evaluating system performance under varying solar irradiance and temperature conditions. The system is modeled and simulated using MATLAB/Simulink, incorporating the PV system, MPPT algorithm, and models for the PV module and boost converter. System efficiency is assessed under different scenarios, with results showing 97.92% efficiency under Standard Test Conditions (STC) at 1000 W/m² and 25°C. Additionally, mean efficiencies of 97.13% and 96.13% are observed under varying irradiance and temperature, demonstrating the effectiveness of the FLC MPPT in regulating output. The system also extends battery life by optimizing power transfer between the PV module, boost converter, and battery, ensuring regulated SOC.
Gholamreza Khademevatan, Ali Jalali,
Volume 21, Issue 3 (September 2025)
Abstract

A novel simplified EKV model base analog/RF CMOS design pre-SPICE tool is presented in this paper. Addition to facilitating the sizing process, this CAD tool can also optimize circuit characteristics. By having a web address, users can access it without installing any software. Using a graphical and a numerical view, the designer can select degrees of freedom and observe the MOS circuit performance. Through the use of charts versus IC, the graphical view can show tradeoffs in circuit performance in real-time. Charts can be displayed simultaneously in both linear and logarithmic scales. IC CRIT , is also available and can be displayed on the charts. This tool is not limited to one process and it is possible to select different processes. It is efficient for pre-SPICE designs, enhancing intuitive understanding and the designer's experience for future projects while eliminating the need for trial-and-error simulations. Furthermore, the predicted results align well with simulation outcomes, demonstrating the effectiveness of the design and optimization method presented. Two methodologies for selecting optimum ICs are presented by this tool. These are illustrated by the study of linearity indices, AIP3 and IIP3, in one-stage and two-stage differential amplifiers and the design of a single-ended OTA.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.