Murni Nabila Mohd Zawawi, Zainuddin Mat Isa, Baharuddin Ismail, Mohd Hafiz Arshad, Ernie Che Mid, Md Hairul Nizam Talib, Muhammad Fitra Zambak,
Volume 21, Issue 2 (Special Issue on the 1st International Conference on ELECRiS 2024 Malaysia - June 2025)
Abstract
This study introduces a pioneering method to enhance the efficiency and effectiveness of three-phase five-level reduced switch cascaded H-bridge multilevel inverters (CHB MLI) by employing the Henry Gas Solubility Optimization (HGSO) algorithm. Targeting the selective harmonic elimination (SHE) technique, the research emphasizes the optimization of switching angles to significantly reduce total harmonic distortion (THD) and align the fundamental output voltage closely with the reference voltage. Central to this exploration are three distinct objective functions (OFs), meticulously designed to assess the HGSO algorithm’s performance across various modulation indices. Simulation results, facilitated by PSIM software, illustrate the impactful role these objective functions play in the optimization process. OF1 demonstrated a superior ability in generating low OF values and maintaining a consistent match between reference and fundamental voltages across the modulation index spectrum. Regarding the reduction of THD, it is crucial to emphasize that all OFs can identify the most effective switching angle to minimize THD and eliminate the fifth harmonic to a level below 0.1%. The findings highlight the potential of HGSO in solving complex optimization challenges within power electronics, offering a novel pathway for advancing modulation strategies in CHB MLIs and contributing to the development of more efficient, reliable, and compact power conversion systems.
Zahraa Talib,
Volume 21, Issue 3 (September 2025)
Abstract
Electronic systems reliant on solar sources need DC voltage over 50 volts; hence, the use of converters is essential to satisfy client requirements. Converters modify the output voltage based on the input voltage. Quadratic DC-DC step-up converters are often used to enhance voltage transfer gain and efficiency. This sort of converter circumvents the issues associated with regular cascaded converters. Alongside the primary aims of its use, the researcher must address the practical aspects of the suggested approach, including duty cycle operational range, output voltage fluctuations, reduction of component consumption, cost, and complexity. This article examines and compares quadratic step-up converter topologies from recent years, highlighting researchers' endeavours to attain high voltage transfer gain, regulated output, and efficiency. The comparison results of the high-gain converter are shown (Table 1) to assist in selecting an appropriate high-gain topology for a particular application. Cross-references should be used there.