Search published articles


Showing 2 results for Jimenez-Moreno

Julian Herrera-Benavidez , Cesar Pachón-Suescún, Robinson Jimenez-Moreno,
Volume 20, Issue 4 (Special Issue on ADLEEE - December 2024)
Abstract

This paper presents the design and results of using a deep learning algorithm for robotic manipulation in object handling tasks in a virtual industrial environment. The simulation tool used is V-REP and the environment corresponds to a production line based on a conveyor belt and a SCARA type robot manipulator. The main contribution of this work focuses on the integration of a depth camera located on the robot and the computation of the gripping coordinates by identifying and locating three different types of objects of interest with random locations on the conveyor belt, through a Faster R-CNN. The results show that the system manages to perform the indicated activities, obtaining a classification accuracy of 97.4% and a mean average precision of 0.93, which allowed a correct detection and manipulation of the objects.
Robinson Jimenez-Moreno, Anny Astrid Espitia Cubillos, Esperanza Rodríguez Carmona,
Volume 20, Issue 4 (Special Issue on ADLEEE - December 2024)
Abstract

This document presents the design of a virtual robotic system for the supervision of physical training exercises, to be carried out in a closed environment, which only requires a computer equipment with a web camera. To do this, deep learning algorithms such as convolutional networks and short- and long-term memory networks are used to recognize voice commands and the user's video actions. A predefined dialogue template is used to guide a user's training cycle based on the execution of the exercises: push-ups, abdominal, jump or squat. The contribution of the work focuses on the integration of deep learning techniques to design and personalize virtual robotic assistants for everyday task. The results show a high level of accuracy by the virtual robot both in understanding the audio and in predicting the exercise to be performed, with a final accuracy value of 97.75% and 100%, respectively.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.