Showing 2 results for Che Mid
Arizadayana Zahalan, Samila Mat Zali, Ernie Che Mid, Noor Fazliana Fadzail,
Volume 21, Issue 2 (Special Issue on the 1st International Conference on ELECRiS 2024 Malaysia - June 2025)
Abstract
Photovoltaic (PV) systems are vital in the global renewable energy landscape because of their capability to harness solar energy efficiently. Ensuring the continuous and efficient operation of PV systems is crucial in maximizing their energy contribution. However, these systems' reliability and safety remain critical because they are prone to various faults, mainly when operating in harsh environmental conditions. This study addresses these issues by exploring fault detection and classification in PV arrays using neural network (NN) -based techniques. A PV array model, consisting of 3x6 PV modules, was simulated using MATLAB Simulink to replicate real-world conditions and analyse various fault scenarios. An open circuit, a short circuit, and a degrading fault are the three types of faults considered in this study. The NN was trained on a dataset generated from the MATLAB Simulink model, encompassing normal operating and fault conditions. This training enables the network to learn the distinctive patterns associated with each fault type, enhancing its detection accuracy and classification capabilities. Simulation results demonstrate that the NN-based approach effectively identifies and classifies the three types of faults.
Murni Nabila Mohd Zawawi, Zainuddin Mat Isa, Baharuddin Ismail, Mohd Hafiz Arshad, Ernie Che Mid, Md Hairul Nizam Talib, Muhammad Fitra Zambak,
Volume 21, Issue 2 (Special Issue on the 1st International Conference on ELECRiS 2024 Malaysia - June 2025)
Abstract
This study introduces a pioneering method to enhance the efficiency and effectiveness of three-phase five-level reduced switch cascaded H-bridge multilevel inverters (CHB MLI) by employing the Henry Gas Solubility Optimization (HGSO) algorithm. Targeting the selective harmonic elimination (SHE) technique, the research emphasizes the optimization of switching angles to significantly reduce total harmonic distortion (THD) and align the fundamental output voltage closely with the reference voltage. Central to this exploration are three distinct objective functions (OFs), meticulously designed to assess the HGSO algorithm’s performance across various modulation indices. Simulation results, facilitated by PSIM software, illustrate the impactful role these objective functions play in the optimization process. OF1 demonstrated a superior ability in generating low OF values and maintaining a consistent match between reference and fundamental voltages across the modulation index spectrum. Regarding the reduction of THD, it is crucial to emphasize that all OFs can identify the most effective switching angle to minimize THD and eliminate the fifth harmonic to a level below 0.1%. The findings highlight the potential of HGSO in solving complex optimization challenges within power electronics, offering a novel pathway for advancing modulation strategies in CHB MLIs and contributing to the development of more efficient, reliable, and compact power conversion systems.