Search published articles



Mon Prakash Upadhyay, Arjun Deo, Ajitanshu Vedratnam ,
Volume 21, Issue 1 (3-2025)
Abstract

This paper provides an overview of the current innovations in Building Integrated Photovoltaic Thermal Systems. This paper briefly describes varying performance evaluation techniques, optimisation techniques, and the environmental impact and cost implication of Building Integrated Photovoltaic Thermal systems. The results reveal high energy-pin efficiency with Building Integrated Photovoltaic Thermal systems of over 50% and more efficient than when the two systems are incorporated separately. Exergy analysis is a more insightful means of analyzing system effectiveness than energy analysis. The paper covers the current algorithms for various optimisation algorithms such as Genetic Algorithms and Particle Swarm Optimisation that provide enhanced utilization improvements. An evaluation of the environmental impact of Building Integrated Photovoltaic Thermal in terms of carbon dioxide emission reduction and building energy optimisation is made. The results of the life cycle cost studies show that, even though the initial cost is higher than conventional solutions, the overall economic profit is more significant in the future. Some of the challenges described in the paper include increased initial costs and sophisticated integration procedures. In contrast, possible future developments include new materials, Building Integrated Photovoltaic Thermal system standardization, and integration in smart grids. This review is intended to be a state-of-the-art source of information for researchers, engineers, architects, and policymakers involved in enhancing sustainable building technologies using building-integrated photovoltaic thermal systems.
Sivaprasad Kollati, Satish Kumar Gudey,
Volume 21, Issue 4 (11-2025)
Abstract

To maximize the efficiency of solar energy conversion into electricity, photovoltaic (PV) system optimization is crucial. This is especially true for off-grid solar installations in remote areas lacking grid access. In order to maximize energy extraction from freestanding PV systems, regardless of fluctuating external conditions, this research provides a modified DC-DC converter and a novel Maximum Power Point Tracking (MPPT) technique. To ensure the photovoltaic (PV) system operates at full capacity despite rapid changes in weather conditions, the proposed solution utilizes the Modified Incremental Conductance MPPT algorithm that dynamically adjusts the system's operational parameters. Extensive simulations run in the MATLAB/Simulink platform confirm that the MPPT technique is efficient and effective. The proposed method outperforms traditional MPPT approaches in both convergence speed and output power stability. This research also develops a novel DC-DC converter to address the challenges given by the fluctuating solar irradiation. The modified DC-DC converter exhibits high gain and shorter settling time, and the improved MPPT method enhances the feasibility of deploying solar energy systems in off-grid and remote regions by enhancing the autonomy of standalone PV systems.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.