Search published articles


Showing 5 results for Predictive

A. Khodayari,
Volume 5, Issue 2 (6-2015)
Abstract

Due to the increasing demand for traveling in public transportation systems and increasing traffic of vehicles, nowadays vehicles are getting to be intelligent to increase safety, reduce the probability of accident and also financial costs. Therefore, today, most vehicles are equipped with multiple safety control and vehicle navigation systems. In the process of developing such systems, simulation has become a cost-effective chance for the fast evolution of computational modeling techniques. The most popular microscopic traffic flow model is car following models which are increasingly being used by transportation experts to evaluate new Intelligent Transportation System (ITS) applications. The control of car following is essential to its safety and its operational efficiency. This paper presents a car-following control system that was developed using a fuzzy model predictive control (FMPC). This system was used to simulate and predict the future behavior of a Driver-Vehicle-Unit (DVU) and was developed based on a new idea to calculate and estimate the instantaneous reaction of a DVU. At the end, for experimental evaluation, the FMPC system was used along with a human driver in a driving simulator. The results showed that the FMPC has better performance in keeping the safe distance in comparison with real data of human drivers behaviors. The proposed model can be recruited in driver assistant devices, safe distance keeping observers, collision prevention systems and other ITS applications.
A.h Kakaee, Sh. Mafi,
Volume 7, Issue 3 (9-2017)
Abstract

In this paper we aim to develop a predictive combustion model for a turbocharged engine in GT-Power software to better simulate engine characteristics and study its behavior under variety of conditions. Experimental data from combustion was initially being used for modelling combustion in software and these data were used for model calibration and result validation. EF7-TC engine was chosen for this research which is the first turbocharged engine designed and developed by IKCO and IPCO in Iran. After analyzing necessary theories for predictive combustion model and required steps for calibration of CombSITurb model in software, one final set of multipliers were calculated based on different sets derived for each engine speed and engine operation was simulated with this combustion model. In addition to improved predictability of engine model, comparing results of predictive model with non-predictive model shows better accuracy especially at lower engine speeds and less tolerance of results for each engine speed.
Behzad Samani, Dr Amir Hossein Shamekhi,
Volume 11, Issue 1 (3-2021)
Abstract

In this paper, an adaptive cruise control system is designed that is controlled by a neural network model. This neural network model is trained with data resulting from the simulation of a multi-objective nonlinear predictive adaptive cruise control system. For this purpose, first, an adaptive cruise control system was designed using the concept of model predictive control based on a nonlinear model to maintain the desired speed of the driver, maintain a safe distance with the car in front, reducing fuel consumption and increasing ride comfort. Due to the time-consuming computations in predictive control systems and the consequent need for powerful and expensive hardware, it was decided to use the extracted data from the simulation of this designed cruise control system to train a neural network model and use this model to achieve control objectives instead of the predictive controller. Using the neural network model in the cruise control system, despite a significant reduction in computation time, the control objectives were well achieved, and in fact a combination of model predictive controller accuracy and neural network controller speed was used.
Dr Mohammad H. Shojaeefard, Dr Mollajafari Morteza, Mr Seyed Hamid R. Mousavitabar,
Volume 14, Issue 1 (3-2024)
Abstract

Fleet routing is one of the basic solutions to meet the good demand of customers in which decisions are made based on the limitations of product supply warehouses, time limits for sending orders, variety of products and the capacity of fleet vehicles. Although valuable efforts have been made so far in modeling and solving the fleet routing problem, there is still a need for new solutions to further make the model more realistic. In most research, the goal is to reach the shortest distance to supply the desired products. Time window restrictions are also applied with the aim of reducing product delivery time. In this paper, issues such as customers' need for multiple products, limited warehouses in terms of the type and number of products that can be offered, and also the uncertainty about handling a customer's request or the possibility of canceling a customer order are considered. We used the random model method to deal with the uncertainty of customer demand. A fuzzy clustering method was also proposed for customer grouping. The final model is an integer linear optimization model that is solved with the powerful tools of Mosek and Yalmip. Based on the simulation results, it was identified to what extent possible and accidental changes in customer behavior could affect shipping costs. It was also determined based on these results that the effective parameters in product distribution, such as vehicle speed, can be effective in the face of uncertainty in customer demand.


Mr Seyed Amir Mohammad Managheb, Mr Hamid Rahmanei, Dr Ali Ghaffari,
Volume 14, Issue 1 (3-2024)
Abstract

The turn-around task is one of the challenging maneuvers in automated driving which requires intricate decision making, planning and control, concomitantly. During automatic turn-around maneuver, the path curvature is too large which makes the constraints of the system severely restrain the path tracking performance. This paper highlights the path planning and control design for single and multi-point turn of autonomous vehicles. The preliminaries of the turn-around task including environment, vehicle modeling, and equipment are described. Then, a predictive approach is proposed for planning and control of the vehicle. In this approach, by taking the observation of the road and vehicle conditions into account and considering the actuator constraints in cost function, a decision is made regarding the minimum number of steering to execute turn-around. The constraints are imposed on the speed, steering angle, and their rates. Moreover, the collision avoidance with road boundaries is developed based on the GJK algorithm. According to the simulation results, the proposed system adopts the minimum number of appropriate steering commands while incorporating the constraints of the actuators and avoiding collisions. The findings demonstrate the good performance of the proposed approach in both path design and tracking for single- and multi-point turns.

Page 1 from 1     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb