Volume 14, Issue 2 (6-2024)                   ASE 2024, 14(2): 4353-4359 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Koranian I, Gholampour M, Mazandarani H. Improving energy harvesting in automotive applications: comparative analysis of ZnO Nanostructures for flexible piezoelectric devices. ASE 2024; 14 (2) :4353-4359
URL: http://www.iust.ac.ir/ijae/article-1-664-en.html
Abstract:   (3654 Views)
Fueled by their potential for energy harvesting, ZnO nanorods (NRs) have sparked considerable enthusiasm in the development of piezoelectric nanogenerators in the last decade. This is attributed to their exceptional piezoelectric properties, semiconducting nature, cost-effectiveness, abundance, chemical stability in the presence of air, and, the availability of diverse and straightforward crystal growth technologies. This study explores and compares the piezoelectric properties of two promising nanostructured ZnO architectures: thin films deposited via radiofrequency (RF) magnetron sputtering and well-aligned nanorod arrays grown using a hydrothermal process. Both structures are fabricated on flexible polyethylene terephthalate (PET) with an indium tin oxide (ITO) electrode (PET-ITO substrate), presenting valuable options for flexible piezoelectric devices. By directly comparing these distinct morphologies, we provide insights into their respective advantages and limitations for energy harvesting and sensor applications. The investigation into the piezoelectric properties of ZnO NRs involved the construction of an actual piezoelectric nanogenerator. This device demonstrated a direct correlation between applied mechanical forces and the resultant voltage outputs. It was observed that when the same external force was applied to both devices, the ZnO NRs-based piezoelectric nanogenerator (PENG) exhibited a higher output voltage compared to the other device.
Full-Text [PDF 687 kb]   (894 Downloads)    
Type of Study: Research | Subject: Automotive electrical systems

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb