Search published articles

Showing 26 results for Meta-Heuristic Algorithm

S. Kazemzadeh Azad, S. Kazemzadeh Azad ,
Volume 1, Issue 2 (6-2011)

Nature-inspired search algorithms have proved to be successful in solving real-world optimization problems. Firefly algorithm is a novel meta-heuristic algorithm which simulates the natural behavior of fireflies. In the present study, optimum design of truss structures with both sizing and geometry design variables is carried out using the firefly algorithm. Additionally, to improve the efficiency of the algorithm, modifications in the movement stage of artificial fireflies are proposed. In order to evaluate the performance of the proposed algorithm, optimum designs found are compared to the previously reported designs in the literature. Numerical results indicate the efficiency and robustness of the proposed approach.
A. Kaveh, T. Bakhshpoori , E. Afshari,
Volume 1, Issue 4 (12-2011)

This paper is concerned with the economical comparison between two commonly used configurations for double layer grids and determining their optimum span-depth ratio. Two ranges of spans as small and big sizes with certain bays of equal length in two directions and various types of element grouping are considered for each type of square grids. In order to carry out a precise comparison between different systems, optimum design procedure based on the Cuckoo Search (CS) algorithm is developed. The CS is a meta-heuristic algorithm recently developed that is inspired by the behavior of some Cuckoo species in combination with the Lévy flight behavior of some birds and insects. The design algorithm obtains minimum weight grid through appropriate selection of tube sections available in AISC Load and Resistance Factor Design (LRFD). Strength constraints of AISC-LRFD specification and displacement constraints are imposed on grids. The comparison is aimed at finding the depth at which each of the different configurations shows its advantages. The results are graphically presented from which the optimum depth can easily be estimated for each type, while the influence of element grouping can also be realized at the same time.
A. Kaveh, T. Bakhshpoori, M. Ashoory,
Volume 2, Issue 1 (3-2012)

Different kinds of meta-heuristic algorithms have been recently utilized to overcome the complex nature of optimum design of structures. In this paper, an integrated optimization procedure with the objective of minimizing the self-weight of real size structures is simply performed interfacing SAP2000 and MATLAB® softwares in the form of parallel computing. The meta-heuristic algorithm chosen here is Cuckoo Search (CS) recently developed as a type of population based algorithm inspired by the behavior of some Cuckoo species in combination with the Lévy flight behavior. The CS algorithm performs suitable selection of sections from the American Institute of Steel Construction (AISC) wide-flange (W) shapes list. Strength constraints of the AISC load and resistance factor design specification, geometric limitations and displacement constraints are imposed on frames. Effective time-saving procedure using simple parallel computing, as well as utilizing reliable analysis and design tool are also some new features of the present study. The results show that the proposed method is effective in optimizing practical structures.
A. Tahershamsia, A. Kaveh, R. Sheikholeslamia , S. Talatahari,
Volume 2, Issue 1 (3-2012)

The Big Bang-Big Crunch (BB–BC) method is a relatively new meta-heuristic algorithm which inspired by one of the theories of the evolution of universe. In the BB–BC optimization algorithm, firstly random points are produced in the Big Bang phase then these points are shrunk to a single representative point via a center of mass or minimal cost approach in the Big Crunch phase. In this paper, the BB–BC algorithm is presented for optimal cost design of water distribution systems and employed to optimize different types of hydraulic networks with discrete variables. The results demonstrate the efficiency of the proposed method compared to other algorithms.
A. Kaveh, N. Shamsapour, R. Sheikholeslami, M. Mashhadian,
Volume 2, Issue 4 (10-2012)

This paper presents application of an improved Harmony Search (HS) technique and Charged System Search algorithm (CSS) to estimate transport energy demand in Iran, based on socio-economic indicators. The models are developed in two forms (exponential and linear) and applied to forecast transport energy demand in Iran. These models are developed to estimate the future energy demands based on population, gross domestic product (GDP), and the data of numbers of vehicles (VEH). Transport energy consumption in Iran is considered from 1968 to 2009 as the case of this study. The available data is partly used for finding the optimal, or near optimal values of the weighting parameters (1968-2003) and partly for testing the models (2004-2009). Finally transport energy demand in Iran is forecasted up to the year 2020.
S. Gholizadeh , V. Aligholizadeh,
Volume 3, Issue 3 (9-2013)

The main aim of the present study is to achieve optimum design of reinforced concrete (RC) plane moment frames using bat algorithm (BA) which is a newly developed meta-heuristic optimization algorithm based on the echolocation behaviour of bats. The objective function is the total cost of the frame and the design constraints are checked during the optimization process based on ACI 318-08 code. Design variables are the cross-sectional assignments of the structural members and are selected from a data set containing a finite number of sectional properties of beams and columns in a practical range. Three design examples including four, eight and twelve story RC frames are presented and the results are compared with those of other algorithms. The numerical results demonstrate the superiority of the BA to the other meta-heuristic algorithms in terms of the frame optimal cost and the convergence rate.
R. Sheikholeslami, A. Kaveh,
Volume 3, Issue 4 (10-2013)

This article presents a comprehensive review of chaos embedded meta-heuristic optimization algorithms and describes the evolution of this algorithms along with some improvements, their combination with various methods as well as their applications. The reported results indicate that chaos embedded algorithms may handle engineering design problems efficiently in terms of precision and convergence and, in most cases they outperform the results presented in the previous works. The main goal of this paper is to providing useful references to fundamental concepts accessible to the broad community of optimization practitioners.
R. Sheikholeslami, A. Kaveh, A. Tahershamsi , S. Talatahari,
Volume 4, Issue 1 (3-2014)

A charged system search algorithm (CSS) is applied to the optimal cost design of water distribution networks. This algorithm is inspired by the Coulomb and Gauss’s laws of electrostatics in physics. The CSS utilizes a number of charged particles which influence each other based on their fitness values and their separation distances considering the governing law of Coulomb. The well-known benchmark instances, Hanoi network, double Hanoi network, and New York City tunnel problem, are utilized as the case studies to evaluate the optimization performance of CSS. Comparison of the results of the CSS with some other meta-heuristic algorithms indicates the performance of the new algorithm.
R. Kamyab , E. Salajegheh,
Volume 4, Issue 2 (6-2014)

This paper presents an efficient meta-heuristic algorithm for optimization of double-layer scallop domes subjected to earthquake loading. The optimization is performed by a combination of harmony search (HS) and firefly algorithm (FA). This new algorithm is called harmony search firefly algorithm (HSFA). The optimization task is achieved by taking into account geometrical and material nonlinearities. Operation of HSFA includes three phases. In the first phase, a preliminary optimization is accomplished using HS. In the second phase, an optimal initial population is produced using the first phase results. In the last phase, FA is employed to find optimum design using the produced optimal initial population. The optimum design obtained by HSFA is compared with those of HS and FA. It is demonstrated that the HSFA converges to better solution compared to the other algorithms.
S. Gholizadeh , H. Asadi , A. Baghchevan,
Volume 4, Issue 3 (9-2014)

The main aim of the present paper is to propose efficient multi-objective optimization algorithms (MOOAs) to tackle truss structure optimization problems. The proposed meta-heuristic algorithms are based on the firefly algorithm (FA) and bat algorithm (BA), which have been recently developed for single-objective optimization. In order to produce a well distributed Pareto front, some improvements are implemented on the basic algorithms. The proposed MOOAs are examined for three truss optimization problems, and the results are compared to those of some other well-known methods. The numerical results demonstrate that the proposed MOOAs possess better computational performance compared to the other algorithms.
Ch Gheyratmand, S. Gholizadeh , B. Vababzadeh,
Volume 5, Issue 2 (3-2015)

A new meta-heuristic algorithm is proposed for optimal design of reinforced concrete (RC) frame structures subject to combinations of gravity and lateral static loads based on ACI 318-08 design code. In the present work, artificial bee colony algorithm (ABCA) is focused and an improved ABCA (IABCA) is proposed to achieve the optimization task. The total cost of the RC frames is minimized during the optimization process subject to constraints on demand capacity ratios (DCRs) of structural members. Three benchmark design examples are tested using ABCA and IABCA and the results are compared with those of presented in the literature. The numerical results indicate that the proposed IABCA is an efficient computational tool for discrete optimization of RC frames.
A. Kaveh, F. Shokohi,
Volume 5, Issue 3 (8-2015)

The main object of this research is to optimize an end-filled castellated beam. In order to support high shear forces close to the connections, sometimes it becomes necessary to fill certain holes in web opening beam. This is done by inserting steel plates and welding from both sides. Optimization of these beams is carried out using three meta-heuristic methods involves CSS, CBO, and CBO-PSO algorithms. To compare the performance of these algorithms, the minimum cost of the beam is taken as the design objective function. Also, in this study, two common types of laterally supported castellated beams are considered as design problems: beams with hexagonal openings and beams with circular openings. A number of design examples are considered to solve in this case. Comparison of the optimal solution of these methods demonstrates that the hexagonal beams have less cost than cellular beams. It is observed that optimization results obtained by the CBO-PSO for more design examples have less cost in comparison to the results of the other methods.
A. Kaveh, M.h. Ghafari,
Volume 5, Issue 4 (7-2015)

In rigid plastic analysis one of the most widely applicable methods that is based on the minimum principle, is the combination of elementary mechanisms which uses the upper bound theorem. In this method a mechanism is searched which corresponds to the smallest load factor. Mathematical programming can be used to optimize this search process for simple frames, and meta-heuristic algorithms are the best choice for larger frame structures. In this paper, the Colliding Bodies Optimization (CBO) and its enhanced variant (ECBO) are employed to optimize the process of finding an upper bound for the collapse load factor of the planar frames. The efficiency of these algorithms is compared to that of the Particle Swarm Optimization (PSO) algorithm through four numerical examples form multi-bay multi-story frames and pitched roof frames.
A. Kaveh , M. Ghobadi,
Volume 6, Issue 3 (9-2016)

The p-median problem is one of the discrete optimization problem in location theory which aims to satisfy total demand with minimum cost. A high-level algorithmic approach can be specialized to solve optimization problem. In recent years, meta-heuristic methods have been applied to support the solution of Combinatorial Optimization Problems (COP). Collision Bodies Optimization algorithm (CBO) and Enhanced Colliding Bodies Optimization (ECBO) are two recently developed continuous optimization algorithms which have been applied to some structural optimization problems. The main goal of this paper is to provide a useful comparison between capabilities of these two algorithms in solving p-median problems. Comparison of the obtained results shows the validity and robustness of these two new meta-heuristic algorithms for p-median problem.

A. Kaveh, A. Zolghadr,
Volume 6, Issue 4 (10-2016)

This paper presents a novel population-based meta-heuristic algorithm inspired by the game of tug of war. Utilizing a sport metaphor the algorithm, denoted as Tug of War Optimization (TWO), considers each candidate solution as a team participating in a series of rope pulling competitions.  The  teams  exert  pulling  forces  on  each  other  based  on  the  quality  of  the solutions  they  represent.  The  competing  teams  move  to  their  new  positions  according  to Newtonian laws of mechanics. Unlike many other meta-heuristic methods, the algorithm is formulated  in  such  a  way  that  considers  the  qualities  of  both  of  the  interacting  solutions. TWO  is  applicable  to  global  optimization  of  discontinuous,  multimodal,  non-smooth,  and non-convex functions. Viability of the proposed method is examined using some benchmark mathematical functions and engineering design problems. The numerical results indicate the efficiency of the proposed algorithm compared to some other methods available in literature.

A. Khajeh, M. R. Ghasemi, H. Ghohani Arab,
Volume 7, Issue 2 (3-2017)

This paper combines particle swarm optimization, grid search method and univariate method as a general optimization approach for any type of problems emphasizing on optimum design of steel frame structures. The new algorithm is denoted as the GSU-PSO. This method attempts to decrease the search space and only searches the space near the optimum point. To achieve this aim, the whole search space is divided into a series of grids by applying the grid search method. By using a method derived from the univariate method, the variables of the best particle change values. Finally, by considering an interval adjustment to the variables and generating particles randomly in new intervals, the particle swarm optimization allows us to swiftly find the optimum solution. This method causes converge to the optimum solution more rapidly and with less number of analyses involved. The proposed GSU-PSO algorithm is tested on several steel frames from the literature. The algorithm is implemented by interfacing MATLAB mathematical software and SAP2000 structural analysis code. The results indicated that this method has a higher convergence speed towards the optimal solution compared to the conventional and some well-known meta-heuristic algorithms. In comparison to the PSO algorithm, the proposed method required around 45% of the total number of analyses recorded and improved marginally the accuracy of solutions.

P. Mohebian, M. Mousavi, H. Rahami,
Volume 7, Issue 2 (3-2017)

The present study is concerned with the simultaneous optimization of the size of components and the arrangement of connections for performance-based seismic design of low-rise SPSWs. Design variables include the size of beams and columns, the thickness of the infill panels, the type of each beam-to-column connection and the type of each infill-to-boundary frame connection. The objective function is considered to be the sum of the material cost and rigid connection fabrication cost. For comparison purposes, the SPSW model is also optimized with regard to two fixed connection arrangements. To fulfill the optimization task a new hybrid optimization algorithm called CBO-Jaya is proposed. The performance of the proposed hybrid optimization algorithm is assessed by two benchmark optimization problems. The results of the application of the proposed algorithm to the benchmark problem indicate the efficiency, robustness, and the fast convergence of the proposed algorithm compared with other meta-heuristic algorithms. The achieved results for the SPSWs demonstrate that incorporating the optimal arrangement of beam-to-column and infill-to-boundary frame connections into the optimization procedure results in considerable reduction of the overall cost.

A. Kaveh, Y. Vazirinia,
Volume 7, Issue 3 (7-2017)

Tower cranes are major and expensive equipment that are extensively used at building construction projects and harbors for lifting heavy objects to demand points. The tower crane locating problem to position a tower crane and supply points in a building construction site for supplying all requests in minimum time, has been raised from more than twenty years ago. This problem has already been solved by linear programming, but meta-heuristic methods spend less time to solving the problem. Hence, in this paper three newly developed meta-heuristic algorithms called CBO, ECBO, and VPS have been used to solve the tower crane locating problem. Three scenarios are studied to show the applicability and performance of these meta-heuristics.

S. Asil Gharebaghi, M. Ardalan Asl,
Volume 7, Issue 3 (7-2017)

A new meta-heuristic method, based on Neuronal Communication (NC), is introduced in this article. The neuronal communication illustrates how data is exchanged between neurons in neural system. Actually, this pattern works efficiently in the nature. The present paper shows it is the same to find the global minimum. In addition, since few numbers of neurons participate in each step of the method, the cost of calculation is less than the other comparable meta-heuristic methods. Besides, gradient calculation and a continuous domain are not necessary for the process of the algorithm. In this article, some new weighting functions are introduced to improve the convergence of the algorithm. In the end, various benchmark functions and engineering problems are examined and the results are illustrated to show the capability, efficiency of the method. It is valuable to note that the average number of iterations for fifty independent runs of functions have been decreased by using Neuronal Communication algorithm in comparison to a majority of methods.

S. A. Hosseini, A. Zolghadr,
Volume 7, Issue 4 (10-2017)

Offshore jacket-type towers are steel structures designed and constructed in marine environments for various purposes such as oil exploration and exploitation units, oceanographic research, and undersea testing. In this paper a newly developed meta-heuristic algorithm, namely Cyclical Parthenogenesis Algorithm (CPA), is utilized for sizing optimization of a jacket-type offshore structure. The algorithm is based on some key aspects of the lives of aphids as one of the highly successful organisms, especially their ability to reproduce with and without mating. The optimal design procedure aims to obtain a minimum weight jacket-type structure subjected to API-RP 2A-WSD specifications. SAP2000 and its Open Application Programming Interface (OAPI) feature are utilized to model the jacket-type structure and the corresponding loading. The results of the optimization process are then compared with those of Particle Swarm Optimization (PSO) and its democratic version (DPSO).

Page 1 from 2    

© 2019 All Rights Reserved | Iran University of Science & Technology

Designed & Developed by : Yektaweb