Search published articles


Showing 10 results for Charged System Search Algorithm

S. Talatahari, A. Kaveh, R. Sheikholeslami,
Volume 1, Issue 2 (6-2011)
Abstract

The Charged System Search (CSS) is combined to chaos to solve mathematical global optimization problems. The CSS is a recently developed meta-heuristic optimization technique inspired by the governing laws of physics and mechanics. The present study introduces chaos into the CSS in order to increase its global search mobility for a better global optimization. Nine chaos-based CSS (CCSS) methods are developed, and then for each variant, the performance of ten different chaotic maps is investigated to identify the most powerful variant. A comparison of these variants and the standard CSS demonstrates the superiority and suitability of the selected variants for the benchmark mathematical optimization problems.
A. Kaveh, A. Zolghadr,
Volume 2, Issue 3 (7-2012)
Abstract

It is well known that damaged structural members may alter the behavior of the structures considerably. Careful observation of these changes has often been viewed as a means to identify and assess the location and severity of damages in structures. Among the responses of a structure, natural frequencies are both relatively easy to obtain and independent from external excitation, and therefore, could be used as a measure of the structure's behavior before and after an extreme event which might have lead to damage in the structure. Inverse problem of detection and assessment of structural damage using the changes in natural frequencies is addressed in this paper. This can be considered as an optimization problem with the location and severity of the damages being its variables. The objective is to set these variables such that the natural frequencies of the finite element model correspond to the experimentally measured frequencies of the actual damaged structure. In practice, although the exact number of damaged elements is unknown, it is usually believed to be small compared to the total number of elements of the structure. In beams and frames particularly, the necessity to divide the structural members into smaller ones in order to detect the location of the cracks more accurately, deepens this difference. This can significantly improve the performance of the optimization algorithms in solving the inverse problem of damage detection. In this paper, the Charged System Search algorithm developed by Kaveh and Talatahari [1] is improved to comprise the above mentioned point. The performance of the improved algorithm is then compared to the standard one in order to emphasize the efficiency of the proposed algorithm in damage detection inverse problems.
A. Kaveh, P. Zakian,
Volume 2, Issue 3 (7-2012)
Abstract

In this article optimal design of shear walls is performed under seismic loading. For practical aims, a database of special shear walls is created. Special shear walls are used for seismic design optimization employing the charged system search algorithm as an optimizer. Constraints consist of design and performance limitations. Nonlinear behavior of the shear wall is taken into account and performance based seismic design optimization is accomplished. Capacity curves of the optimal solution are determined and compared incorporates soil–structure interaction. Also an optimization based method is proposed for bilinear approximation of capacity curve. These are a new methodology for seismic RC shear wall optimum design.
A. Kaveh, N. Shamsapour, R. Sheikholeslami, M. Mashhadian,
Volume 2, Issue 4 (10-2012)
Abstract

This paper presents application of an improved Harmony Search (HS) technique and Charged System Search algorithm (CSS) to estimate transport energy demand in Iran, based on socio-economic indicators. The models are developed in two forms (exponential and linear) and applied to forecast transport energy demand in Iran. These models are developed to estimate the future energy demands based on population, gross domestic product (GDP), and the data of numbers of vehicles (VEH). Transport energy consumption in Iran is considered from 1968 to 2009 as the case of this study. The available data is partly used for finding the optimal, or near optimal values of the weighting parameters (1968-2003) and partly for testing the models (2004-2009). Finally transport energy demand in Iran is forecasted up to the year 2020.
R. Sheikholeslami, A. Kaveh, A. Tahershamsi , S. Talatahari,
Volume 4, Issue 1 (3-2014)
Abstract

A charged system search algorithm (CSS) is applied to the optimal cost design of water distribution networks. This algorithm is inspired by the Coulomb and Gauss’s laws of electrostatics in physics. The CSS utilizes a number of charged particles which influence each other based on their fitness values and their separation distances considering the governing law of Coulomb. The well-known benchmark instances, Hanoi network, double Hanoi network, and New York City tunnel problem, are utilized as the case studies to evaluate the optimization performance of CSS. Comparison of the results of the CSS with some other meta-heuristic algorithms indicates the performance of the new algorithm.
S. Talatahari, M. T. Aalami, R. Parsiavash,
Volume 6, Issue 2 (6-2016)
Abstract

This paper presents an efficient optimization procedure to find the optimal shapes of double curvature  arch  dams  considering  fluid–structure  interaction  subject  to  earthquake  loading. The optimization is carried out using a combination of the magnetic charged system search, big bang-big crunch algorithm and artificial neural network methods. Performing the finite element  analysis  during  the  optimization  process  is  time  consuming.  Back  propagation neural  network  is  utilized  to  reduce  the  computational  burden.  A  real-world  arch  dam  is considered as a numerical example to demonstrate the efficiency of the proposed method. The numerical results reveal the computational advantages of the new method for optimal 
design of arch dams.


P. Sharafi, M. Askarian, M. E. Uz, H. Abaci,
Volume 7, Issue 1 (1-2017)
Abstract

Preliminary layout design of buildings has a substantial effect on the ultimate design of structural components and accordingly influences the construction cost. Exploring structurally efficient forms and shapes during the conceptual design stage of a project can also facilitate the optimum integrated design of buildings. This paper presents an automated method of determining column layout design of rectilinear orthogonal building frames using Charged System Search (CSS) algorithm. The layout design problem is presented as a combinatorial optimization problem named multi-dimensional knapsack problem by setting some constraints to the problem, where the minimum cost and maximum plan regularity are the objectives. The efficiency and robustness of CSS to solve the combinatorial optimization problem are demonstrated through a numerical design problem. The results of the algorithm are compared to those of an ant colony algorithm in order to validate the solution.


P. Sharafi, M. Mortazavi, M. Askarian, M. E. Uz, C. Zhang, J. Zhang,
Volume 7, Issue 4 (10-2017)
Abstract

Graph theory based methods are powerful means for representing structural systems so that their geometry and topology can be understood clearly. The combination of graph theory based methods and some metaheuristics can offer effective solutions for complex engineering optimization problems. This paper presents a Charged System Search (CSS) algorithm for the free shape optimizations of thin-walled steel sections, represented by some popular graph theory based methods. The objective is to find shapes of minimum mass and/or maximum strength for thin-walled steel sections that satisfy design constraints, which results in a general formulation for a bi-objective combinatorial optimization problem. A numerical example involving the shape optimization of thin-walled open and closed steel sections is presented to demonstrate the robustness of the method.


H. Safari , A. Gholizad,
Volume 8, Issue 2 (8-2018)
Abstract

Damage assessment is one of the crucial topics in the operation of structures. Multiplicities of structural elements and joints are the main challenges about damage assessment of space structure. Vibration-based damage evaluation seems to be effective and useful for application in industrial conditions and the low-cost. A method is presented to detect and assess structural damages from changes in mode shapes. First, the mechanism of using two-dimensional continuous wavelet transform is applied for damage localization. Second, finite element model updating technique is utilized as an inverse optimization problem by applying the charged system search algorithm to assess the damage in each element sited in the first stage. The study indicates the potentiality of the developed code to assess the damages of space structures without concerning about the size and shape of structure. A series of numerical examples with different damage scenarios have been carried out in the double layer space structures and the results confirm the reliability and applicability of introduced method.
S. Delir, A. Foroughi-Asl, S. Talatahari,
Volume 9, Issue 2 (4-2019)
Abstract

Water distribution networks are one of the important and costly infrastructures of cities and many meta-heuristic algorithms in standard or hybrid forms were used for optimizing water distribution networks. These algorithms require a large amount of computational cost. Therefore, the converging speed of algorithms toward the optimization goal is as important as the goal itself. In this paper, a new method is developed by linking the charged system search algorithm and firefly algorithm for optimizing water distribution networks. For evaluating the proposed method, some popular benchmark examples are considered. Simulation results demonstrate the efficiency of the proposed algorithm compared to others.

Page 1 from 1     

© 2019 All Rights Reserved | Iran University of Science & Technology

Designed & Developed by : Yektaweb