Search published articles

Showing 3 results for Skeletal Structures

S. Talatahari, M. Nouri, F. Tadbiri,
Volume 2, Issue 4 (10-2012)

Over the past few years, swarm intelligence based optimization techniques such as ant colony optimization and particle swarm optimization have received considerable attention from engineering researchers. These algorithms have been used in the solution of various structural optimization problems where the main goal is to minimize the weight of structures while satisfying all design requirements imposed by design codes. In this paper, artificial bee colony algorithm (ABC) is utilized to optimize different skeletal structures. The results of the ABC are compared with the results of other optimization algorithms from the literature to show the efficiency of this technique for structural design problems.
V. R. Kalatjari, M. H. Talebpour,
Volume 8, Issue 3 (10-2018)

In this article, by Partitioning of designing space, optimization speed is tried to be increased by GA. To this end, designing space search is done in two steps which are global search and local search. To achieve this goal, according to meshing in FEM, firstly, the list of sections is divided to specific subsets. Then, intermediate member of each subset, as representative of subset, is defined in a new list. Optimization process is started based on the new list of sections which includes subset’s representatives (global search). After some specific generations, range of optimum design is indicated for each designing variable. Afterwards, the list of sections is redefined relative to previous step’s result and based on subset of relevant variable. Finally, optimization will be continued based on the new list of sections for each designing variable to complete the generations (local search). In this regard, effect of dimension and number of subset’s members of global and local searches in proposal are investigated by optimization examples of skeletal structures. Results imply on optimization speed enhancement based on proposal in different cases proportional to simple and advanced cases of GA.
N. Sedaghati , M. Shahrouzi,
Volume 12, Issue 4 (8-2022)

Beyond common practice that treats structural damage detection as an optimization problem, the present work offers another approach that updates boundaries of the damage ratios. In this approach the bandwidth between such lower and upper boundaries, is adaptively reduced aiming to coincide at the true damage state. Formulation of the proposed method is developed using modal strain energy in a system of finite elements. A resolution-based technique is applied so that the search space cardinality can be defined and then reduced. The proposed method is validated on different structural types including beam, frame and truss examples with various damage scenarios. The results exhibit high cardinality reduction and capability of the proposed iterative method in squeezing the design space for more efficient search.

Page 1 from 1     

© 2023 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb