Search published articles


Showing 409 results for Type of Study: Research

Dr. Zahra Esfandiari, Prof. Mahdi Bashiri, Prof. Reza Tavakkoli-Moghaddam,
Volume 0, Issue 0 (3-2020)
Abstract

One of the major risks that can affect supply chain design and management is the risk of facility disruption due to natural hazards, economic crises, terrorist attacks, etc. Static resiliency of the network is one of the features that is considered when designing networks to manage disruptions, which increases the network reliability. This feature refers to the ability of the network to maintain its operation and connection in the lack of some members of the chain. Facility hardening is one of the strategies used for this purpose. In this paper, different reliable capacitated fixed-charge location allocation models are developed for hedging network from failure. In these proposed models, hardening, resilience, and hardening and resilience abilities are considered respectively. These problems are formulated as a nonlinear programming models and their equivalent linear form are presented. The sensitivity analysis confirms that the proposed models construct more effective and reliable network comparing to the previous networks. A Lagrangian decomposition algorithm (LDA) is developed to solve the linear models. Computational results show that the LDA is efficient in computational time and quality of generated solutions for instances with different sizes. Moreover, the superiority of the proposed model is confirmed comparing to the classical model.

Volume 0, Issue 0 (3-2020)
Abstract

In this paper, an integrated mathematical model of the dynamic cell formation and production planning, considering the pricing and advertising decision is proposed. This paper puts emphasis on the effect of demand aspects (e.g., pricing and advertising decisions) along with the supply aspects (e.g., reconfiguration, inventory, backorder and outsourcing decisions) in developed model. Due to imprecise and fuzzy nature of input data such as unit costs, capacities and processing times in practice, a fuzzy multi-objective programming model is proposed to determine the optimal demand and supply variables simultaneously. For this purpose, a fuzzy goal programming method is used to solve the equivalent defuzzified multi-objective model. The objective functions are to maximize the total profit for firm and maximize the utilization rate of machine capacity. The proposed model and solution method is verified by a numerical example.
Dr Chinedum Mgbemena, Dr Emmanuel Chinwuko,
Volume 0, Issue 0 (3-2020)
Abstract

Crude oil production output forecast is very important in the formulation of genuine and suitable production policies; it is pivotal in planning and decision making. This paper explores the use of forecasting techniques to assist the oil field manager in decision making. In this analysis, statistical models of projected trends which involves graphical, least squares, simple moving average and exponential smoothing methods were compared. The least squares method was found to be most suitable to capture the recent random nature of crude oil production output in the oilfield of the Niger Delta region of Nigeria. In addition, a multiple linear regression model was developed for predicting daily, weekly, monthly or even yearly volume of crude oil production output in the oilfield facility.
Mehrdad Kargari, Susan Sahranavard,
Volume 0, Issue 0 (3-2020)
Abstract

Background: The continuous growth of healthcare and medicine costs as a strategic commodity requires tools to identify high cost populations and cost control. After the implementation of the healthcare Reform plan in Iran, a huge share of hospital funding has been spent on undesirable costs due to changes in the use of medicines and instruments.
Objective: The aim of this study was to compare the cost of medicines in both the pre and post period of health plan implementation to detect abnormalities and low frequency patterns in the medical prescriptive that account more than 30% of hospital budget funds.
Method: Therefore a data mining model has been used. First, by forming incidence matrices on the cross-features; categorized prescriptions information. Then using normalized risk function to identify abnormal and high cost cases based on the distance between the input data and the mean of the data. The data used are 15078 records, including information from patients' prescriptions from Shari'ati HIS in Tehran-Iran from 2012 to 2016.
Results: According to the obtained results, the proposed model has a positive Likehood ratio (LR+) of 6.35.
 
Hamiden Khalifa,
Volume 0, Issue 0 (3-2020)
Abstract

   This paper deals with a multi- objective linear fractional programming problem involving probabilistic parameters in the right- hand side of the constraints. These probabilistic parameters are randomly distributed with known means and variances through the use of Uniform and Exponential Distributions. After converting the probabilistic problem into an equivalent deterministic problem, a fuzzy programming approach is applied by defining a membership function. A linear membership function is being used for obtaining an optimal compromise solution. The stability set of the first kind without differentiability corresponding to the obtained optimal compromise solution is determined. A solution procedure for obtaining an optimal compromise solution and the stability set of the first kind is presented. Finally, a numerical example is given to clarify the practically and the efficiency of the study.
 
Elham Moazzam Jazi, Hadi Abdollahzadeh Sangroudi,
Volume 0, Issue 0 (3-2020)
Abstract

Biofuels production systems are identified as a potential solution in responding to the ever-increasing energy consumption demand. The complexity of conversion process and supply chain of these systems, however, can make the commercialization of biofuels less attractive, so designing and management of an efficient biofuel supply chain network can resolve this issue. Hence, this paper proposes a multi-period hybrid generation biomass-to-biofuel supply chain considering environmental, economic and technology considerations. The objective is to maximize the total profit that biofuel producers can make with practical constraints including the biomass supply, the capacity of facilities, storage, Greenhouse Gas (GHG) emissions and transportation with limited capacity. To highlight the applicability of the proposed model, it is applied to a biomass-derived liquid fuel supply system in the southern region of Iran. In the case study, wheat and wheat stem are simultaneously considered as the first- and second-generation of feedstocks for biodiesel production. Sensitivity analyses show that available biomasses can have a significant impact on the profitability of this supply chain. The obtained results demonstrate the efficiency and performance of the proposed model in biodiesel supply chain design.
Vahid Babaveisi, Farnaz Barzinpour, Ebrahim Teimoury,
Volume 0, Issue 0 (3-2020)
Abstract

In this paper, an inventory-routing problem for a network of appliance repair service is discussed including several repair depots and customers. The customer in this network makes a demand to have his/her faulty appliance repaired. Then, the repairman is assigned to the demand based on the skill needed for repairing of appliance differing for each one. The assigned repairman picks up the faulty appliance from the customer place using the vehicle for transferring faulty appliances to repair depot. The vehicle for picking up and delivering the appliances has a maximum capacity. Additionally, the repair depot needs spare parts to repair the faulty appliances that is supplied either by the supplier or lateral transshipment from the other depots. The capacitated vehicle inventory-routing problem with simultaneous pickup and delivery is NP-hard which needs special optimization procedure. Regarding the skill of repairman, it becomes more complex. Many solution approaches have been provided so far which have their pros and cons to deal with. In this study, an augmented angle-based sweep method is developed to cluster nodes for solving the problem. Finally, the heuristic is used in the main body of genetic algorithm with special representation.
Kosar Omrani, Abdul Sattar Safaei, Mohammad Mahdi Paydar, Maryam Nikzad,
Volume 0, Issue 0 (3-2020)
Abstract

Regarding population growth and prompt development in developing countries, municipal solid waste management is always a great challenge for governments. Waste to energy conversion is an efficient approach with respect to overcoming not only the challenge of municipal solid waste management but also environmental challenges related to energy consumption like global warming and fossil fuel depletion. One of the substantial problems throughout the implementation of waste to energy approach is process selection. The selected process should be technically feasible and should have a high level of compliance with environmental standards. Owing to an inevitable significance of process selection, this paper focuses on defining the best process by relying on multi-criteria decision-making tools and network analytic process. Considering the effective parameters such as cost, efficiency in material diversity, productivity rate, energy consumption, pollutant emissions, toxic substances, and process time, the result indicates that the physico-chemical process is superior process for pretreatment of material.

Parviz Fattahi, Zohreh Shakeri Kebria,
Volume 0, Issue 0 (3-2020)
Abstract

In this paper, a new model of hub locating has been solved considering reliability and importance of flow congestion on hub nodes in a dynamic environment. Each of nodes considered as hubs and their communication paths with other non-hubs nodes have specific reliability. In order to reduce input flow to any hub and avoid creation unsuitable environmental and traffic conditions in that area, efficiency capacity is allocated to each hub, which is subject to a penalty in case of exceeding this amount. Another capability of this model is the ability of deciding whether hubs are active or inactive in each period, so hub facilities can be established or closed due to different conditions (such as changes in demand, legislative, etc.). The model is non-linear and bi-objective that the first goal is reducing transportation costs, hub rental fees and extra flow congestion penalties on hub nodes and the second goal is to increase the minimum designed network reliability. After linearization of the model, using ε-constraint method, optimal boundary is obtained. Also, to demonstrate the performance of the model, we use IAD dataset for solving problem. To evaluate the model, sensitivity analysis is presented for some of important parameters of the model.
F.d. Javanroodi , K. M. Nikbin ,
Volume 17, Issue 3 (9-2006)
Abstract

There is an increasing need to assess the service life of components containing defect which operate at high temperature. This paper describes the current fracture mechanics concepts that are employed to predict cracking of engineering materials at high temperatures under static and cyclic loading. The relationship between these concepts and those of high temperature life assessment methods is also discussed. A model for predicting creep crack growth initiation and growth in terms of C* and the creep uniaxial ductility is presented and it is shown that this model gives good agreement with the experimental results. The effects of cyclic loading on crack growth behaviour are considered and fractography evidence is shown to back a simple cumulative damage concept when dealing with creep/fatigue interaction. Finally a discussion is presented which highlights the important aspect of life assessment methodology for high temperature plant.


H. Yarjiabadi, M. H. Shojaeefard, A.r. Noorpoor, H.yarjiabadi, , M. Habibian , A.r. Noorpoor ,
Volume 17, Issue 3 (9-2006)
Abstract

The hydrocyclone has a very important roll in industrial separation. The consideration of its behavior is very important for design. In this investigation, behavior of water flow and particles trajectory inside a hydrocyclone has been considered by means of numerical and experimental methods, and results have been compared together. To have a numerical simulation, a CFD software was used, and for modeling flow the RNG k – model applied. Finally, the effect of particle size on hydrocyclone performance has been studied. It was found that the grade efficiency and number of particle that exit from underflow of the hydrocyclone is increased when bigger particles is used.

A series of experiments has been carried out in a laboratory with a hydrocyclone. Comparison shows that, there is a good agreement between the CFD models and experimental result.


M. Haghpanahi, H. Pirali ,
Volume 17, Issue 3 (9-2006)
Abstract

Finite element analysis of a tubular T-joint subjected to various loading conditions including pure axial loading, pure in-plane bending (IPB) and different ratios of axial loading to in-plane bending loading has been carried out. This effort has been established to estimate magnitudes of the peak hot spot stresses (HSS) at the brace/chord intersection and to find the corresponding locations as well, since, in reality, offshore tubular structures are subjected to combined loading, and hence fatigue life of these structures is affected by combined loading. Therefore in this paper, at the first step, stress concentration factors (SCFs) for pure axial loading and in-plane bending loading are calculated using different parametric equations and finite element method (FEM). At the next step, the peak HSS distributions around the brace/chord intersection are presented and verified by the results obtained from the API RP2A Code procedure. Also the locations of the peak hot spot stresses which are the critical points in fatigue life assessment have been predicted. 


M. M. Shokrieh, R. Rafiee ,
Volume 17, Issue 3 (9-2006)
Abstract

The main goal of this research is to extract the full mechanical properties of stitch biax and triax composite materials which are necessary for finite element analysis, based on limited available experimental data and without performing full static characterization tests. Utilized experimental data are limited to elastic modulus of two 0o and 45o directions. Using presented technique and aforementioned data, mechanical properties of unidirectional fabrics of biax and triax are obtained and consequently mechanical properties of biax and triax composites are calculated. Evaluation of the results proved proper performance of the technique in this research.


M.r. Modarres Razavi, S.h. Seyedein, P.b. Shahabi , S.h Seyedein,
Volume 17, Issue 3 (9-2006)
Abstract

In this paper hemodynamic wall parameters which play an important role to diagnose arterial disease were studied and compared for three different rheology models (Newtonian, Power law and Quemada). Also because of the pulsatile behavior of blood flow the results were obtained for three Womersley numbers which represent the frequencies of the applied pulses. Results show that Quemada model always located between Newtonian and Power law models however its behavior is closer to Power law model. Concerning this behavior and better agreement between Quemada and experimental blood viscosity, it can be expected that Quemada results are more realistic and accurate.


M. Nikian, , M. Naghashzadegan, S. K. Arya ,
Volume 17, Issue 3 (9-2006)
Abstract

The cylinder working fluid mean temperature, rate of heat fluxes to combustion chamber and temperature distribution on combustion chamber surface will be calculated in this research. By simulating thermodynamic cycle of engine, temperature distribution of combustion chamber will be calculated by the Crank-Nicolson method. An implicit finite difference method was used in this code. Special treatments for piston movement and a grid transformation for describing the realistic piston bowl shape were designed and utilized. The results were compared with a finite element method and were verified to be accurate for simplified test problems. In addition, the method was applied to realistic problems of heat transfer in an Isuzu Diesel engine, and gave good agreement with available experimental.


M. H. Shojaeefard, F. A. Boyaghchi , M. B. Ehghaghi ,
Volume 17, Issue 4 (11-2006)
Abstract

In this paper the centrifugal pump performances are tested when handling water and viscous oils as Newtonian fluids. Also, this paper shows a numerical simulation of the three-dimensional fluid flow inside a centrifugal pump. For these numerical simulations the SIMPLEC algorithm is used for solving governing equations of incompressible viscous/turbulent flows through the pump. The k-ε turbulence model is adopted to describe the turbulent flow process. These simulations have been made with a steady calculation using the multiple reference frames (MRF) technique to take into account the impeller- volute interaction. Numerical results are compared with the experimental characteristic curve for each viscous fluid. The data obtained allow the analysis of the main phenomena existent in this pump, such as: head, efficiency and power changes for different operating conditions. Also, the correction factors for oils are obtained from the experiment for part loading (PL), best efficiency point (BEP) and over loading (OL). These results are compared with proposed factors by American Hydraulic Institute (HIS) and Soviet :::union::: (USSR). The comparisons between the numerical and experimental results show good agreement.


Gh. Yari , M. D Jafari ,
Volume 17, Issue 4 (11-2006)
Abstract

Main result of this paper is to derive the exact analytical expressions of information and covariance matrix for multivariate Pareto, Burr and related distributions. These distributions arise as tractable parametric models in reliability, actuarial science, economics, finance and telecommunications. We showed that all the calculations can be obtained from one main moment multidimensional integral whose expression is obtained through some particular change of variables. Indeed, we consider that this calculus technique for that improper integral has its own importance.


 


A. Shidfar, Ali Zakeri,
Volume 17, Issue 4 (11-2006)
Abstract

This paper considers a linear one dimensional inverse heat conduction problem with non constant thermal diffusivity and two unknown terms in a heated bar with unit length. By using the WKB method, the heat flux at the end of boundary and initial temperature will be approximated, numerically. By choosing a suitable parameter in WKB method the ill-posedness of solution will be improved. Finally, a numerical example will be presented.


M.r. Alirezaee, S.a Mir-Hassani,
Volume 17, Issue 4 (11-2006)
Abstract

In the evaluation of non-efficient units by Data Envelopment Analysis (DEA) referenced Decision Making Units (DMU’s) have an important role. Unfortunately DMU’s with extra ordinary output can lead to a monopoly in a reference set, the fact called abnormality due to the outliers' data. In this paper, we introduce a DEA model for evaluating DMU’s under this circumstance. The layer model can result in a ranking for DMU’s and obtain an improving strategy leading to a better layer.


M. Nadjafikhah, H. R. Salimi Moghaddam ,
Volume 17, Issue 4 (11-2006)
Abstract

In this article, we generalize the concept of the Lie algebra of vector fields to the set of smooth sections of a T-bundle which is by definition a canonical generalization of the concept of a tangent bundle. We define a Lie bracket multiplication on this set so that it becomes a Lie algebra. In the particular case of tangent bundles this Lie algebra coincides with the Lie algebra of vector fields.



Page 1 from 21    
First
Previous
1
...
 

© 2020 All Rights Reserved | International Journal of Industrial Engineering & Production Research

Designed & Developed by : Yektaweb