Search published articles


Showing 4 results for Geometry Optimization

S. Kazemzadeh Azad, S. Kazemzadeh Azad ,
Volume 1, Issue 2 (6-2011)
Abstract

Nature-inspired search algorithms have proved to be successful in solving real-world optimization problems. Firefly algorithm is a novel meta-heuristic algorithm which simulates the natural behavior of fireflies. In the present study, optimum design of truss structures with both sizing and geometry design variables is carried out using the firefly algorithm. Additionally, to improve the efficiency of the algorithm, modifications in the movement stage of artificial fireflies are proposed. In order to evaluate the performance of the proposed algorithm, optimum designs found are compared to the previously reported designs in the literature. Numerical results indicate the efficiency and robustness of the proposed approach.
W. Cheng, F. Liu , L.j. Li,
Volume 3, Issue 3 (9-2013)
Abstract

A novel optimization algorithm named teaching-learning-based optimization (TLBO) algorithm and its implementation procedure were presented in this paper. TLBO is a meta-heuristic method, which simulates the phenomenon in classes. TLBO has two phases: teacher phase and learner phase. Students learn from teachers in teacher phases and obtain knowledge by mutual learning in learner phase. The suitability of TLBO for size and geometry optimization of structures in structural optimal design was tested by three truss examples. Meanwhile, these examples were used as benchmark structures to explore the effectiveness and robustness of TLBO. The results were compared with those of other algorithms. It is found that TLBO has advantages over other optimal algorithms in convergence rate and accuracy when the number of variables is the same. It is much desired for TLBO to be applied to the tasks of optimal design of engineering structures.
K. Biabani Hamedani , V. R. Kalatjari,
Volume 8, Issue 4 (10-2018)
Abstract

Structural reliability theory allows structural engineers to take the random nature of structural parameters into account in the analysis and design of structures. The aim of this research is to develop a logical framework for system reliability analysis of truss structures and simultaneous size and geometry optimization of truss structures subjected to structural system reliability constraint. The framework is in the form of a computer program called RBO-S>S. The objective of the optimization is to minimize the total weight of the truss structures against the aforementioned constraint. System reliability analysis of truss structures is performed through branch-and-bound method. Also, optimization is carried out by genetic algorithm. The research results show that system reliability analysis of truss structures can be performed with sufficient accurately using the RBO-S>S program. In addition, it can be used for optimal design of truss structures. Solutions are suggested to reduce the time required for reliability analysis of truss structures and to increase the precision of their reliability analysis.
M. Shahrouzi, A. Barzigar, D. Rezazadeh,
Volume 9, Issue 3 (6-2019)
Abstract

Opposition-based learning was first introduced as a solution for machine learning; however, it is being extended to other artificial intelligence and soft computing fields including meta-heuristic optimization. It not only utilizes an estimate of a solution but also enters its counter-part information into the search process. The present work applies such an approach to Colliding Bodies Optimization as a powerful meta-heuristic with several engineering applications. Special combination of static and dynamic opposition-based operators are hybridized with CBO so that its performance is enhanced. The proposed OCBO is validated in a variety of benchmark test functions in addition to structural optimization and optimal clustering. According to the results, the proposed method of opposition-based learning has been quite effective in performance enhancement of parameter-less colliding bodies optimization.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb