Search published articles


Showing 3 results for Continuous Optimization

A. Kaveh, S. M. Hosseini,
Volume 12, Issue 3 (4-2022)
Abstract

Design optimization of structures with discrete and continuous search spaces is a complex optimization problem with lots of local optima. Metaheuristic optimization algorithms, due to not requiring gradient information of the objective function, are efficient tools for solving these problems at a reasonable computational time. In this paper, the Doppler Effect-Mean Euclidian Distance Threshold (DE-MEDT) metaheuristic algorithm is applied to solve the discrete and continuous optimization problems of the truss structures subject to multiple loading conditions and design constraints. DE-MEDT algorithm is a recently proposed metaheuristic developed based on a physical phenomenon called Doppler Effect (DE) with some idealized rules and a mechanism called Mean Euclidian Distance Threshold (MEDT). The efficiency of the DE-MEDT algorithm is evaluated by optimizing five large-scale truss structures with continuous and discrete variables. Comparing the results found by the DE-MEDT algorithm with those of other existing metaheuristics reveals that the DE-MEDT optimizer is a suitable optimization technique for discrete and continuous design optimization of large-scale truss structures.
 
M. Ilchi Ghazaan , A.h. Salmani Oshnari , A. M. Salmani Oshnari,
Volume 13, Issue 1 (1-2023)
Abstract

Colliding Bodies Optimization (CBO) is a population-based metaheuristic algorithm that complies physics laws of momentum and energy. Due to the stagnation susceptibility of CBO by premature convergence and falling into local optima, some meritorious methodologies based on Sine Cosine Algorithm and a mutation operator were considered to mitigate the shortcomings mentioned earlier. Sine Cosine Algorithm (SCA) is a stochastic optimization method that employs sine and cosine based mathematical models to update a randomly generated initial population. In this paper, we developed a new hybrid approach called hybrid CBO with SCA (HCBOSCA) to obtain reliable structural design optimization of discrete and continuous variable structures, where a memory was defined to intensify the convergence speed of the algorithm. Finally, three structural problems were studied and compared to some state of the art optimization methods. The experimental results confirmed the competence of the proposed algorithm.
 
M. Paknahad, P. Hosseini, A. Kaveh,
Volume 13, Issue 1 (1-2023)
Abstract

Optimization methods are essential in today's world. Several types of optimization methods exist, and deterministic methods cannot solve some problems, so approximate optimization methods are used. The use of approximate optimization methods is therefore widespread. One of the metaheuristic algorithms for optimization, the EVPS algorithm has been successfully applied to engineering problems, particularly structural engineering problems. As this algorithm requires experimental parameters, this research presents a method for determining these parameters for each problem and a self-adaptive algorithm called the SA-EVPS algorithm. In this study, the SA-EVPS algorithm is compared with the EVPS algorithm using the 72-bar spatial truss structure and three classical benchmarked functions
 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb