Search published articles

Showing 6 results for Shape Optimization

S. Gholizadeh, A. Barzegar , Ch. Gheyratmand,
Volume 1, Issue 3 (9-2011)

The main aim of the present study is to propose a modified harmony search (MHS) algorithm for size and shape optimization of structures. The standard harmony search (HS) algorithm is conceptualized using the musical process of searching for a perfect state of the harmony. It uses a stochastic random search instead of a gradient search. The proposed MHS algorithm is designed based on elitism. In fact the MHS is a multi-staged version of the HS and in each stage a new harmony memory is created using the information of the previous stages. Numerical results reveal that the proposed algorithm is a powerful optimization technique with improved exploitation characteristics compared with the standard HS.
S. Shojaee, N. Valizadeh , M. Arjomand,
Volume 1, Issue 4 (12-2011)

One primary problem in shape optimization of structures is making a robust link between design model (geometric description) and analysis model. This paper investigates the potential of Isogeometric Analysis (IGA) for solving this problem. The generic framework of shape optimization of structures is presented based on Isogeometric analysis. By discretization of domain via NURBS functions, the analysis model will precisely demonstrate the geometry of structure. In this study Particle Swarm Optimization (PSO) is used for Isogeometric shape optimization. The option of selecting the position and weight of control points as design variables, needless to sensitivity analysis relationships, is the superiority of the proposed method over gradient-based methods. The other advantages of this method are its straightforward implementation
S. Shojaee, M. Mohamadianb , N. Valizadeh,
Volume 2, Issue 1 (3-2012)

In the present paper, an approach is proposed for structural topology optimization based on combination of Radial Basis Function (RBF) Level Set Method (LSM) with Isogeometric Analysis (IGA). The corresponding combined algorithm is detailed. First, in this approach, the discrete problem is formulated in Isogeometric Analysis framework. The objective function based on compliance of particular locations of materials in the structure is used and find the optimal distribution of material in the domain to minimize the compliance of the system under a volume constraint. The refinement is employed for construction of the physical mesh to be consistent with the mesh is used for level set function. Then a parameterized level set method with radial basis functions (RBFs) is used for structural topology optimization. Finally, several numerical examples are provided to confirm the validity of the method.
M. Khatibinia, H. Chiti, A. Akbarpour , H. R. Naseri,
Volume 6, Issue 1 (1-2016)

This study focuses on the shape optimization of concrete gravity dams considering dam–water–foundation interaction and nonlinear effects subject to earthquake. The concrete gravity dam is considered as a two–dimensional structure involving the geometry and material nonlinearity effects. For the description of the nonlinear behavior of concrete material under earthquake loads, the Drucker–Prager model based on the associated flow rule is adopted in this study. The optimum design of concrete gravity dams is achieved by the hybrid of an improved gravitational search algorithm (IGSA) and the orthogonal crossover (OC), called IGSA–OC. In order to reduce the computational cost of optimization process, the support vector machine approach is employed to approximate the dam response instead of directly evaluating it by a time–consuming finite element analysis. To demonstrate the nonlinear behavior of concrete material in the optimum design of concrete gravity dams, the shape optimization of a real dam is presented and compared with that of dam considering linear effect.
P. Sharafi, M. Mortazavi, M. Askarian, M. E. Uz, C. Zhang, J. Zhang,
Volume 7, Issue 4 (10-2017)

Graph theory based methods are powerful means for representing structural systems so that their geometry and topology can be understood clearly. The combination of graph theory based methods and some metaheuristics can offer effective solutions for complex engineering optimization problems. This paper presents a Charged System Search (CSS) algorithm for the free shape optimizations of thin-walled steel sections, represented by some popular graph theory based methods. The objective is to find shapes of minimum mass and/or maximum strength for thin-walled steel sections that satisfy design constraints, which results in a general formulation for a bi-objective combinatorial optimization problem. A numerical example involving the shape optimization of thin-walled open and closed steel sections is presented to demonstrate the robustness of the method.

M. Shahrouzi, S.-Sh. Emamzadeh, Y. Naserifar,
Volume 13, Issue 4 (10-2023)

Shape optimization of a double-curved dam is formulated using control points for interpolation functions. Every design vector is decoded into the integrated water-dam-foundation rock model. An enhanced algorithm is proposed by hybridizing particle swarm algorithm with ant colony optimization and simulated annealing. The best experiences of the search agents are indirectly shared via pheromone trail deposited on a bi-partite characteristic graph. Such a stochastic search is further tuned by Boltzmann functions in simulated annealing. The proposed method earned the first rank in comparison with six well-known meta‑heuristic algorithms in solving benchmark test functions. It captured the optimal shape design of Morrow Point dam, as a widely addressed case-study, by 21% reduced concrete volume with respect to the common USBR design practice and 16% better than the particle swarm optimizer. Such an optimal design was also superior to the others in stress redistribution for better performance of the dam system.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb