Search published articles


Showing 6 results for Ahmadi-Nedushan

S.a. Alavi, B. Ahmadi-Nedushan, H. Rahimi Bondarabadi,
Volume 1, Issue 1 (3-2011)
Abstract

In this article, an efficient methodology is presented to optimize the topology of structural systems under transient loads. Equivalent static loads concept is used to deal with transient loads and to solve an alternate quasi-static optimization problem. The maximum strain energy of the structure under the transient load during the loading interval is used as objective function. The objective function is calculated in each iteration and then the dynamic optimization problem is replaced by a static optimization problem, which is subsequently solved by a convex linearization approach combining linear and reciprocal approximation functions. The optimal layout of a deep beam subjected to transient loads is considered as a case study to verify the effectiveness of the presented methodology. Results indicate that the optimal layout is dependant of the loading interval.
V. Shobeiri , B. Ahmadi-Nedushan,
Volume 9, Issue 4 (9-2019)
Abstract

In this paper, the bi-directional evolutionary structural optimization (BESO) method is used to find optimal layouts of 3D prestressed concrete beams. Considering the element sensitivity number as the design variable, the mathematical formulation of topology optimization is developed based on the ABAQUS finite element software package. The surface-to-surface contact with a small sliding between concrete and prestressing steels is assumed to accurately model the prestressing effects. The concrete constitutive model used is the concrete damaged plasticity (CDP) model in ABAQUS. The integration of the optimization algorithm and finite element analysis (FEA) tools is done by using the ABAQUS scripting interface. A pretensioned prestressed simply supported beam is modeled to show capabilities of the proposed method in finding optimal topologies of prestressed concrete beams. Many issues relating to topology optimization of prestressed concrete beams such as the effects of prestressing stress, geometrical discontinuities and height constraints on optimal designs and strut-and-tie models (STMs) are studied in the example. The results show that the proposed method can efficiently be used for layout optimization of prestressed concrete beams.
R. Javanmardi , B. Ahmadi-Nedushan,
Volume 11, Issue 3 (8-2021)
Abstract

In this research, the optimization problem of the steel-concrete composite I-girder bridges is investigated. The optimization process is performed using the pattern search algorithm, and a parallel processing-based approach is introduced to improve the performance of this algorithm. In addition, using the open application programming interface (OAPI), the SM toolbox is developed. In this toolbox, the OAPI commands are implemented as MATLAB functions. The design variables represent the number and dimension of the longitudinal beam and the thickness of the concrete slab. The constraints of this problem are presented in three steps. The first step includes the constraints on the web-plate and flange-plate proportion limits and those on the operating conditions. The second step consists of considering strength constraints, while the concrete slab is not yet hardened. In the third step, strength and deflection constraints are considered when the concrete slab is hardened. The AASHTO LRFD code (2007) for steel beam design and AASHTO LRFD (2014) for concrete slab design are used. The numerical examples of a sloping bridge with a skew angle are presented. Results show that active constraints are those on the operating conditions and component strength and that in terms of CPU time, a 19.6% improvement is achieved using parallel processing.
M. Payandeh-Sani , B. Ahmadi-Nedushan,
Volume 12, Issue 1 (1-2022)
Abstract

This article presents numerical studies on semi-active seismic response control of structures equipped with Magneto-Rheological (MR) dampers. A multi-layer artificial neural network (ANN) was employed to mitigate the influence of time delay, This ANN was trained using data from the El-Centro earthquake. The inputs of ANN are the seismic responses of the structure in the current step, and the outputs are the MR damper voltages in the current step. The required training data for the neural controller is generated using genetic algorithm (GA). Using the El-Centro earthquake data, GA calculates the optimal damper force at each time step. The optimal voltage is obtained using the inverse model of the Bouc-Wen based on the predicted force and the corresponding velocity of the MR damper. This data is stored and used to train a multi-layer perceptron neural network. The ANN is then employed as a controller in the structure. To evaluate the efficiency of the proposed method, three- story, seven- story and twenty-story structures with a different number of MR dampers were subjected to the Kobe, Northridge, and Hachinohe earthquakes. The maximum reduction in structural drifts in the three-story structure are 13.05%, 39.90%, 15.89%, and 8.21%, for the El-Centro, Hachinohe, Kobe, and Northridge earthquakes, respectively. As the control structure is using a pre-trained neural network, the computation load in the event of an earthquake is extremely low. Additionally, as the ANN is trained on seismic pre-step data to predict the damper's current voltage, the influence of time lag is also minimized.
M. Payandeh-Sani , B. Ahmadi-Nedushan,
Volume 13, Issue 2 (4-2023)
Abstract

In this study, the response of semi-actively controlled structures is investigated, with a focus on the effects of magneto-rheological (MR) damper distribution on the seismic response of structures such as drift and acceleration. The proposed model is closed loop, and the structure's response is used to determine the optimal MR damper voltage. A Fuzzy logic controller (FLC) is employed to calculate the optimum voltage of MR dampers. Drifts and velocities of the structure’s stories are used as FLC inputs. The FLC parameters and the distribution of MR dampers across stories are determined using the NSGA-II, when the structure is subjected to the El-Centro earthquake, so as to minimize the peak inter-story drift ratio and peak acceleration simultaneously. The efficiency of the proposed approach is illustrated through a twenty-story nonlinear benchmark structure. Non-dominated solutions are obtained to minimize the inter-story drift and acceleration of structures and Pareto front produced. Then, the non-dominated solutions are used to control the seismic response of the benchmark structure, which was subjected to the Northridge, Kobe, and Hachinohe earthquake records. In the numerical example the maximum drift and acceleration decrease by about 36.3% and 15%, respectively, in the El-Centro earthquake. The results also demonstrate that the proposed controller is more efficient in reducing drift than reducing acceleration.
 
B. Ahmadi-Nedushan, A. M. Almaleeh,
Volume 14, Issue 4 (10-2024)
Abstract

This study uses an elitist Genetic Algorithm (GA) to optimize material costs in one-way reinforced concrete slabs, adhering to ACI 318-19. A sensitivity analysis demonstrated the critical role of elitism in GA performance. Without elitism, the GA consistently failed to reach the target objective, with success rates often nearing zero across various crossover fractions. Incorporating elitism dramatically increased success rates, highlighting the importance of preserving high-performing individuals. With an optimal configuration of 0.3 crossover fraction and 0.45 elite percentage, a 92% success rate was achieved, finding a cost of 24.91 in 46 of 50 runs for a simply supported slab. This optimized design, compared to designs based on ACI 318-99 and ACI 318-08, yielded material cost savings of between 5.8% to 8.6% for simply supported, one-end continuous, both-ends continuous, and cantilevered slabs. The influence of slab dimensions on cost was evaluated across 64 scenarios, varying slab lengths from 5 to 20 feet for each support condition. Resulting cost versus slab length diagrams illustrate the economic benefits of GA optimization.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb