Search published articles



A. Kaveh, S. M. Hamze-Ziabari, T. Bakhshpoori,
Volume 8, Issue 1 (1-2018)
Abstract

In the present study, two new hybrid approaches are proposed for predicting peak ground acceleration (PGA) parameter. The proposed approaches are based on the combinations of Adaptive Neuro-Fuzzy System (ANFIS) with Genetic Algorithm (GA), and with Particle Swarm Optimization (PSO). In these approaches, the PSO and GA algorithms are employed to enhance the accuracy of ANFIS model. To develop hybrid models, a comprehensive database from Pacific Earthquake Engineering Research Center (PEER) are used to train and test the proposed models. Earthquake magnitude, earthquake source to site distance, average shear-wave velocity, and faulting mechanisms are used as predictive parameters. The performances of developed hybrid models (PSO-ANFIS-PSO and GA-ANFIS-GA) are compared with the ANFIS model and also the most common soft computing approaches available in the literature. According to the obtained results, three developed models can be effectively used to predict the PGA parameter, but the comparison of models shows that the PSO-ANFIS–PSO model provides better results.


M. Fadavi Amiri, S. A. Soleimani Eyvari, H. Hasanpoor, M. Shamekhi Amiri,
Volume 8, Issue 1 (1-2018)
Abstract

For seismic resistant design of critical structures, a dynamic analysis, based on either response spectrum or time history is frequently required. Due to the lack of recorded data and randomness of earthquake ground motion that might be experienced by the structure under probable future earthquakes, it is usually difficult to obtain recorded data which fit the necessary parameters (e.g. soil type, source mechanism, focal depth, etc.) well. In this paper, a new method for generating artificial earthquake accelerograms from the target earthquake spectrum is suggested based on the use of wavelet analysis and artificial neural networks. This procedure applies the learning capabilities of neural network to expand the knowledge of inverse mapping from the response spectrum to the earthquake accelerogram. At the first step, wavelet analysis is utilized to decompose earthquake accelerogram into several levels, which each of them covers a special range of frequencies. Then for every level, a neural network is trained to learn the relationship between the response spectrum and wavelet coefficients. Finally, the generated accelerogram using inverse discrete wavelet transform is obtained. In order to make earthquake signals compact in the proposed method, the multiplication sample of LPC (Linear predictor coefficients) is used. Some examples are presented to demonstrate the effectiveness of the proposed method.


A. K. Dixit, M. K. Roul, B. C. Panda,
Volume 8, Issue 1 (1-2018)
Abstract

The objective of this work is to predict the temperature of the different types of walls which are Ferro cement wall, reinforced cement concrete (RCC) wall and two types of cavity walls (combined RCC with Ferrocement and combined two Ferro cement walls) with the help of mathematical modeling. The property of low thermal transmission of small air gap between the constituents of combine materials has been utilized to obtain energy efficient wall section. Ferro cement is a highly versatile form of reinforced concrete made up of wire mesh, sand, water, and cement, which possesses unique qualities of strength and serviceability. The significant intention of the proposed technique is to frame a mathematical modeling with the aid of optimization techniques. Mathematical modeling is done by minimizing the cost and time consumed in the case of extension of the existing work. Mathematical modeling is utilized to predict the temperature of the different wall such as RCC wall, Ferro cement, combined RCC with Ferro cement and combined Ferro cement wall. The different optimization algorithms such as Social Spider Optimization (SSO), Genetic Algorithm (GA) and Group Search Optimization (GSO) are utilized to find the optimal weights α and β of the mathematical modeling. All optimum results demonstrate that the attained error values between the output of the experimental values and the predicted values are closely equal to zero with the SSO model. The results of the proposed work are compared with the existing methods and the minimum errors with SSO algorithm for the case of two combined RCC wall was found to be less than 2%.


M. Oulapour, A. Adib, M. Saidian,
Volume 8, Issue 1 (1-2018)
Abstract

Digging of geotechnical boreholes and soil resistance tests are time-consuming and expensive activities. Therefore selection of optimum number and suitable location of boreholes can reduce cost of their drilling and soil resistance tests. In this research, a model which is consisting of geo statistics model as an estimator and an optimized model is selected. The kriging calculates the variance of the estimation error of different combinations from available geotechnical boreholes. In each combination, n is number of considered boreholes and N is number of available boreholes (N>n). At the end, the best combination is selected by genetic algorithm (the error variance of this combination is minimum). Also the Kean Shahr of Ahvaz city (in Khuzestan province, Iran) is selected as case study in this research. Location of selected boreholes is in points that soil resistance of these points represents mean soil resistance of total region. Optimum number of boreholes is 15. Also results show that location of selected boreholes depends to soil resistance and diameter and length of applied piles are not important for this purpose.


S. Fallahian, A. Joghataie , M.t. Kazemi,
Volume 8, Issue 3 (10-2018)
Abstract

An effective method utilizing the differential evolution algorithm (DEA) as an optimisation solver is suggested here to detect the location and extent of single and multiple damages in structural systems using time domain response method. Changes in acceleration response of structure are considered as a criterion for damage occurrence. The acceleration of structures is obtained using Newmark method. Damage is simulated by reducing the elasticity modulus of structural members. Three illustrative examples are numerically investigated, considering also measurement noise effect. All the numerical results indicate the high accuracy of the proposed method for determining the location and severity of damage.
A. Behnam , M. R. Esfahani,
Volume 8, Issue 3 (10-2018)
Abstract

In this study, the complex behavior of steel encased reinforced concrete (SRC) composite beam–columns in biaxial bending is predicted by multilayer perceptron neural network. For this purpose, the previously proposed nonlinear analysis model, mixed beam-column formulation, is verified with biaxial bending test results. Then a large set of benchmark frames is provided and P-Mx-My triaxial interaction curve is obtained for them. The specifications of these frames and their analytical results are defined as inputs and targets of artificial neural network and a relatively accurate estimation model of the nonlinear behavior of these beam-columns is presented. In the end, the results of neural network are compared to some analytical examples of biaxial bending to determine the accuracy of the model.
A. Kaveh, S. R. Hoseini Vaez, P. Hosseini,
Volume 8, Issue 3 (10-2018)
Abstract

Vibrating particles system (VPS) is a new meta-heuristic algorithm based on the free vibration of freedom system’ single degree with viscous damping. In this algorithm, each agent gradually approach to its equilibrium position; new agents are generated according to current agents and a historically best position. Enhanced vibrating particles system (EVPS) employs a new alternative procedure to enhance the performance of the VPS algorithm. Two different truss structures are investigated to demonstrate the performance of the VPS and EVPS weight optimization of structures.
M. Torkan , M. Naderi Dehkordi,
Volume 8, Issue 4 (10-2018)
Abstract

Concrete is the second most consumed material after water and the most widely used construction material in the world. The compressive strength of concrete is one of its most important mechanical properties, which highly depends on its mix design. The present study uses the intelligent methods with instance-based learning ability to predict the compressive strength of concrete. To achieve this objective, first, a set of data pertaining to concrete mix designs containing fly ash was collected. Then, mix design parameters were used as the inputs of the artificial neural network (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS) developed for predicting the compressive strength. In all these models, prediction accuracy largely depends on the parameters of the learning model. Hence, the particle swarm optimization (PSO) algorithm, as a powerful population-based algorithm for solving continuous and discrete optimization problems, was used to determine the optimal values of algorithm parameters. The hybrid models were trained and tested with 426 experimental data and their results were compared by statistical criteria. Comparing the results of the developed models with the real values showed that the ANFIS-PSO hybrid model has the best performance and accuracy among the assessed methods.
A. Gholizad, S. Eftekhar Ardabili,
Volume 8, Issue 4 (10-2018)
Abstract

The existence of recorded accelerograms to perform dynamic inelastic time history analysis is of the utmost importance especially in near-fault regions where directivity pulses impose extreme demands on structures and cause widespread damages. But due to the scarcity of recorded acceleration time histories, it is common to generate proper artificial ground motions. In this paper an alternative approach is proposed to generate near-fault pulse-like ground motions. A smoothening approach is taken to extract directivity pulses from an ensemble of near-fault pulse-like ground motions. First, it is proposed to simulate nonpulse-type ground motion using Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Wavelet Packet Transform (WPT). Next, the pulse-like ground motion is produced by superimposing directivity pulse on the previously generated nonpulse-type motion. The main objective of this study is to generate near-field spectrum compatible records. Particle Swarm Optimization (PSO) is employed to optimize both the parameters of pulse model and cluster radius in subtractive clustering and Principle Component Analysis (PCA) is used to reduce the dimension of ANFIS input vectors. Artificial records are generated for the first, second and third level of wavelet packet decomposition. Finally, a number of interpretive examples are presented to show how the method works. The results show that the response spectra of generated records are decently compatible with the target near-field spectrum, which is the main objective of the study.
S. M. Eslami, F. Abdollahi, J. Shahmiri, S. M. Tavakkoli,
Volume 9, Issue 1 (1-2019)
Abstract

This paper aims to introduce topology optimization as a robust tool for damage detection in plane stress structures. Two objective functions based on natural frequencies and shape modes of the structure are defined to minimize discrepancy between dynamic specifications of the real damaged structure and the updating model. Damage area is assumed as a porous material where amount of porosity signifies the damage intensity. To achieve this, Solid Isotropic Material with Penalization (SIMP) model is employed. Sensitivity analysis is achieved and a mathematical based method is used for solving the optimization problems. In order to demonstrate efficiency and robustness of the method to identify various type of damages in terms of both location and intensity, several numerical examples are presented and the results are discussed.
R. Kamgar, M. Khatibinia, M. Khatibinia,
Volume 9, Issue 2 (4-2019)
Abstract

Many researches have focused on the optimal design of tuned mass damper (TMD) system without the effect of soil–structure interaction (SSI), so that ignoring the effect of SSI may lead to an undesirable and unrealistic design of TMD. Furthermore, many optimization criteria have been proposed for the optinal design of the TMD system. Hence, the main aim of this study is to compare different optimization criteria for the optimal design of the TMD system considering the effects of SSI in a high–rise building. To acheive this purpose, the optimal TMD for a 40–storey shear building is firstly evaluated by expressing the objective functions in terms of the reduction of structural responses (including the displacement and acceleration) and the limitation of the scaled stroke of TMD. Then, the best optimization criterion is selected, which leads to the best performance for the vibration control of the structure. In this study, the whale optimization algorithm (WOA) is employed to optimize the parameters of the TMD system. The numerical results show that the soil type and selected objective function efficiently affect the optimal design of the TMD system.
M. Araghi, M. Khatibinia,
Volume 9, Issue 2 (4-2019)
Abstract

Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel functions in order to improve the learning and generalization ability of WLS–SVM. In the proposed method, a linear convex combination of the radial basis function (RBF) and Morlet wavelet kernel functions is adopted, which are considered as the most popular kernel functions. To validate the efficiency of the proposed method, experiments are conducted on a database including 118 uniaxial dynamic creep test results. The results of the statistical criteria show a good agreement between the predicted and measured flow number values. Further, the simulation results demonstrate that the proposed MK–SVM approach has more superior performance than the single kernel based WLS–SVM and other methods found in the literature.
Y. Sharifi, M. Hosseinpour,
Volume 9, Issue 2 (4-2019)
Abstract

In the current study two methods are evaluated for predicting the compressive strength of concrete containing metakaolin. Adaptive neuro-fuzzy inference system (ANFIS) model and stepwise regression (SR) model are developed as a reliable modeling method for simulating and predicting the compressive strength of concrete containing metakaolin at the different ages. The required data in training and testing state obtained from a reliable data base. Then, a comparison has been made between proposed ANFIS model and SR model to have an idea about the predictive power of these methods.
J. Sobhani, M. Ejtemaei, A. Sadrmomtazi, M. A. Mirgozar,
Volume 9, Issue 2 (4-2019)
Abstract

Lightweight concrete (LWC) is a kind of concrete that made of lightweight aggregates or gas bubbles. These aggregates could be natural or artificial, and expanded polystyrene (EPS) lightweight concrete is the most interesting lightweight concrete and has good mechanical properties. Bulk density of this kind of concrete is between 300-2000 kg/m3. In this paper flexural strength of EPS is modeled using four regression models, nine neural network models and four adaptive Network-based Fuzzy Interface System model (ANFIS). Among these models, ANFIS model with Bell-shaped membership function has the best results and can predict the flexural strength of EPS lightweight concrete more accurately.
 
F. Yosefvand, S. Shabanlou, S. Kardar,
Volume 9, Issue 2 (4-2019)
Abstract

The flow in sewers is a complete three phase flow (air, water and sediment). The mechanism of sediment transport in sewers is very important. In other words, the passing flow must able to wash deposited sediments and the design should be done in an economic and optimized way. In this study, the sediment transport process in sewers is simulated using a hybrid model. In other words, using the Adaptive Neuro-Fuzzy Inference System (ANFIS) and the Particle Swarm Optimization (PSO) algorithm a hybrid algorithm (ANFIS-PSO) is developed for predicting the Froude number of three phase flows. This inference system is a set of if-then rules which is able to approximate non-linear functions. In this model, PSO is employed for increasing the ANFIS efficiency by adjusting membership functions as well as minimizing error values. In fact, the PSO algorithm is considered as an evolutionary computational method for optimizing the process continues and discontinues decision making functions. Additionally, PSO is considered as a population-based search method where each potential solution, known as a swarm, represents a particle of a population. In this approach, the particle position is changed continuously in a multidimensional search space, until reaching the optimal response and or computational limitations. At first, 127 ANFIS-PSO models are defined using parameters affecting the Froude number. Then, by analyzing the ANFIS-PSO model results, the superior model is presented. For the superior model, the Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE) and the determination coefficient (R2) were calculated equal to 5.929, 0.324 and 0.975, respectively.
H. Fattahi,
Volume 9, Issue 2 (4-2019)
Abstract

key factor in the successful application of a tunnel boring machine (TBM) in tunneling is the ability to develop accurate penetration rate estimates for determining project schedule and costs. Thus establishing a relationship between rock properties and TBM penetration rate can be very helpful in estimation of this vital parameter. However, this parameter cannot be simply predicted since there are nonlinear and unknown relationships between rock properties and TBM penetration rate. Relevance vector regression (RVR) is one of the robust artificial intelligence algorithms proved to be very successful in recognition of relationships between input and output parameters. The aim of this paper is to show the application of RVR in prediction of TBM performance. The model was applied to available data given in open source literatures. In this model, uniaxial compressive strengths of the rock (UCS), the distance between planes of weakness in the rock mass (DPW) and rock quality designation (RQD) were utilized as the input parameters, while the measured TBM penetration rates was the output parameter. The performances of the proposed predictive model was examined according to two performance indices, i.e., coefficient of determination (R2) and mean square error (MSE). The obtained results of this study indicated that the RVR is a reliable method to predict penetration rate with a higher degree of accuracy.
M. Grigorian, A. Biglari, M. Kamizi, E. Nikkhah,
Volume 9, Issue 3 (6-2019)
Abstract

The research leading to this paper was prompted by the need to estimate strength and stiffness of Rigid Rocking Cores (RRCs) as essential elements of resilient earthquake resisting structures. While a limited number of such studies have been reported, no general study in terms of physical properties of RRCs, their appendages and adjoining structures have been published. Despite the growing knowledge on RRCs there are no design guidelines on their applications for seismic protection of buildings. The purpose of the present article is to propose effective rigidity limits beyond which it would be unproductive to use stiffer cores and to provide basic guidelines for the preliminary design of RRCs with a view to collapse prevention, re-centering and post-earthquake repairs/replacements. Several examples supported by computer analysis have been provided to demonstrate the applications and the validity of the proposed solutions.
Gh. Asadzadeh Khoshemehr , H. Bahadori,
Volume 9, Issue 3 (6-2019)
Abstract

Direct drilling method and the use of microtremor studies are among the most commonly used available methods utilized to estimate dynamic parameters for a site. One of the most important parameters is the dominant period of the site whose estimation plays a pivotal role in seismic hazard mitigation. The conventional models obtained are not capable of estimating the parameters that govern the seismic response of a site. Therefore, Artificial Neural Networks (ANNs) are reliable and practical estimation methods that can be used to analyze comprehensive measurements such as dominant period of a site, and improve the data. In this paper, the performance of ANNs has been investigated on calculation of the dominant period for a site. Three different models, namely BP, RBF and ANFIS, have been compared to determine the best model that provides the most accurate estimation for the dominant period. The input parameters have been chosen to be alluvial layer thickness, grain size, specific gravity, effective stress, shear wave velocity, standard penetration number, Atterberg limits. Each of the three models has been trained and tested for these input parameters and a unique output which is the dominant period of the site. The results showed that ANNs successfully model complex relationships between soil parameters and seismic parameters of the site, and provide a robust tool to accurately estimate the dominant period of a site. The accurate estimations can be then used for engineering applications including damage assessment and structural health monitoring. In addition, The obtained emulator of RBF model shows the least model error in estimation of dominant period and has been found to be superior to the other evaluated methods.
D. Sedaghat Shayegan, A Lork, S.a.h. Hashemi,
Volume 9, Issue 3 (6-2019)
Abstract

In this paper, the optimum design of a reinforced concrete one-way ribbed slab, is presented via recently developed metaheuristic algorithm, namely, the Mouth Brooding Fish (MBF). Meta-heuristics based on evolutionary computation and swarm intelligence are outstanding examples of nature-inspired solution techniques. The MBF algorithm simulates the symbiotic interaction strategies adopted by organisms to survive and propagate in the ecosystem. This algorithm uses the movement, dispersion and protection behavior of Mouth Brooding Fish as a pattern to find the best possible answer. The cost of the system is considered to be the objective function, and the design is based on the American Concrete Institute’s ACI 318-08 standard. The performance of this algorithm is compared with harmony search (HS), colliding bodies optimization (CBO), particle swarm optimization (PSO), democratic particle swarm optimization (DPSO), charged system search (CSS) and enhanced charged system search (ECSS). The numerical results demonstrate that the MBF algorithm is able to construct very promising results and has merits in solving challenging optimization problems.
M.m. Noruzi, F. Yazdandoost,
Volume 9, Issue 3 (6-2019)
Abstract

The excessive focus on water mounts a challenge to the sustainable development. Energy is another aspect that should be taken into account. Nexus approach is characterized by an equal emphasis on energy and water spheres. In arid areas, like the city of Kashan, Iran, non-conventional waters (e.g. desalinated and recycled waters) have been considered as an alternative resource of water. Nexus warns that alternative resources should be tapped in with consideration of the costs and environmental impacts of the energy. In this study, the allocation of demands and supplies in the basin are primarily modeled by WEAP. Then, the energy required to generate water is simulated by LEAP. Finally, using the optimization method, the desirable volume of non-conventional water is estimated. The results suggest that the maximum capacity of the non-conventional water is not necessarily the optimal point. Thus, despite high potentials for producing non-conventional water, caution should be practiced in setting proper limit for the production.


Page 1 from 5    
First
Previous
1
 

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb