Search published articles


Showing 22 results for Control

M. Nikpey, M. Khatibinia, H. Eliasi,
Volume 14, Issue 4 (10-2024)
Abstract

In recent years, semi-active control has been introduced as a promising method for the seismic control of structures, potentially combining the benefits of both passive and active control systems. Magneto-rheological damper (MR) is one of the semi-active devices and its dynamic model is expressed by the Bouc-Wen model. The sliding sector control (SSC) strategy as a robust control approach is a class of variable structure (VS) systems for linear and nonlinear continuous-time systems with a special type of sliding sector using a new equivalent sector control. The purpose of this study is to evaluate the effectiveness of the SSC strategy in determining the optimal voltage of MR at each step of time. For a numerical example, a three-story benchmark shear structure is considered subjected to normal (100%), high (150%), and low (50%) excitation levels of the El Centro earthquake. The results of the numerical simulations show that the semi-active control system consisting of the SSC strategy and an MR damper can be beneficial in reducing the seismic responses of structures. Furthermore, the efficiency of the SSC strategy is also compared against that of the fuzzy and clipped-optimal controllers. Comparative results of the numerical simulation confirm the robustness and ability of the SSC strategy.
M. Shahrouzi, M. Fahimi Farzam, J. Gholizadeh,
Volume 15, Issue 2 (4-2025)
Abstract

The tuned mass damper inerter systems have recently received considerable attention in the field of structural control. The present work offers a practical configuration of such a device, called double tuned mass damper inerter (DTMDI) that connects the inerter into the damper masses rather than be attached to the main structure. Soil-structure interaction is also taken into account for the soft and dense soils as well as for the fixed based condition. The H  norm of the transfer functions for the roof response is minimized as the objective function. The parameters of DTMDI are optimized using opposition-switching search as an efficient parameter-less algorithm in comparison with lightning attachment procedure optimization, sine cosine algorithm and particle swarm optimization. The system performance is evaluated in the frequency domain, as well as in the time domain under various earthquakes including far-field records, near-field records with forward directivity and with fling-step. The results show superiority of opposition-switching search for optimal design of the proposed DTMDI so that it can significantly reduce both the roof displacement and acceleration response for all the SSI conditions.

Page 2 from 2     

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb