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ABSTRACT

The purpose of this paper is to present a polynomial time algorithm which determines the lot
sizes for purchase component in Material Requirement Planning (MRP) environments with
deterministic time-phased demand with zero lead time. In this model, backlog is not
permitted, the unit purchasing price is based on the all-units discount system and resale of the
excess units is possible at the ordering time. The properties of an optimal order policy are
argued and on the basis of them, a branch and bound algorithm is presented to construct an
optimal sequence of order policies. In the proposed B&B agorithm, some useful fathoming
rules have been proven to make the algorithm very efficient. By defining a rooted tree graph, it
has been shown that the worst-case time complexity function of the presented agorithm is
polynomial. Finally, some test problems which are randomly generated in various
environments are solved to show the efficiency of the algorithm.
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1. INTRODUCTION
In a large scale project with nonrenewable resources or in a manufacturing firm, the task of

replenishing components at the right time, price and quantities has an essentia effect on the
total cost of the project. When the demand rate changes over time and replenishments are
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made periodically, the problem of ordering a single product over afinite horizon and satisfying
the demands without backlogging is known as the general dynamic lot size problem. This
problem has been studied by many researchers. In particular, when all-units quantity discounts
are available, the problem is called Quantity Discount Problem (QDP). Benton and Park [1]
have separated the literature on solving QDP into two categories: exact methods and heuristic
methods. The exact methods find an optimal order policy that minimizes the total inventory
costs. Chung et al. [2] have developed an optimal dynamic algorithm for the QDP and they
have proved an essential property of the optimal order policy. Federgruen and Lee [3] have
proposed a dynamic programming algorithm for the QDP with only one discount level in

purchasing. They claimed that their algorithm is an optimal algorithm of O(N®) where N is

the number of periods in the planning horizon, but Xu and Lu [4] by presenting some special
counterexamples have shown that their algorithm fails to find the optimal solution in some
cases. Mirmohammadi et al. [5] have presented an optimal algorithm based on the branch and
bound approach for the QDP which is extremely more efficient than Chung et al. agorithm
[2], especidly for large scale problems. Chan et d. [6] have shown that the QDP becomes
NP-hard if the purchasing cost function of the amount ordered satisfies the three following
properties:

0] it is anondecreasing function of the amount ordered,

(i) the purchasing cost per unit is nonincreasing in the amount ordered and

(iii) it either varies from period to period or the number of breakpoints is not bounded

The QDP is aso applicable for production planning problems as Hoesel and Wagelmans
[7] have developed an agorithm that solves the constant capacitated economic lot-sizing
problem with concave production costs and linear holding costs in O(N®) time. Their greedy
algorithm is based on the standard dynamic programming approach which is based on
structural properties of the optimal sub plans to arrive at a more efficient implementation.
When the number of items which should be acquired is more than one, the QDP changes into
the total quantity discount (TQD). Goossens et a. [8] have proved that TQD is NP-hard and
also there exists no polynomial-time approximation algorithm with a constant ratio for this
problem (unlessP =NP). When all-units discount are available from vendors, under some
circumstances, buying a sufficiently large quantity to qualify for a certain discount and then
disposing the excess units (with a positive or negative cost per unit) to save on inventory
holding cost, leads to economic polices [9]. Sethi [9] has considered the simple lot size mode
with quantity discount and alowing the possibility of disposa at some finite cost in the
environment with constant demand rate. The case with negative disposal cost per unit is
considered as the resale in the literature which is modeled by Sohan and Hwang [10]. With
respect to the running time of the algorithm. Sohan and Hwang [10] have observed that their

N
algorithm is in O(N?’(‘L)Z) where d," is the cumulative demand of all periods and q is
q

the discount level. It is obvious that the time complexity function of their algorithm depends on
the demand rate. For example if the item to be acquired has a demand pattern with constant
average, the time complexity function of their algorithm becomes O(N5 ) . It can be observed

in real-life situations that the demand for essential commodities such as petrol, diesel and for
sophisticated items such as electronic goods, computer spare parts, etc. increases gradualy
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with time. So, their demand pattern can be represented appropriately by a linear increasing

function of time, Giria et al. [11]. In these cases, their algorithm becomesO(N ).

The organization of this paper is as follows. In section 2, the dynamic quantity discount lot
size model with resale is discussed. The assumptions and the properties of an optimal order
policy for the single level discount case are explained in section 3. In section 4, an optimal
branch and bound algorithm and a numerical example are presented. The worst-case time
complexity function of the presented algorithm is studied in section 5 by defining a rooted tree
graph. Section 6 presents an experimenta design for evaluating our agorithm in some varied
environments. Concluding remarks are made in section 7.

2. THE DYNAMIC QUANTITY DISCOUNT LOT SIZE MODEL WITH
RESALE

Consider a planning horizon of N periods. It is assumed that there is a known positive
demand for an item at each period that should be met by some orders through these periods,
and backlog is not allowed. We assume that any ordering can occur only at the beginning of
each period with constant ordering cost of A . The ordered items arrive immediately to satisfy
the demand of that period. At this time, it is aso possible to resell some units of the arrived
order at a constant price.

Now, for period t, t =1,2,...,N, let

d, =amount demanded

I, = amount of inventory at the end of period, 1, =1, =0

h, =holding cost per unit of inventory carried from period j to period j +1

d, =§ d. , the cumulative demands from period t to period j, t£ j£ N.

i=t

the constant parameters are

U = unit net purchasing price

A = ordering cost

C = unit resadle price

There are two decision variables for period t, t =1,2,..., N, as stated below:

X =amount ordered

r, =amount resold.

It is assumed that there is one discount rate a , 0<a £1, which is associate with the price
break point (discount level) D, D >0. The unit purchase price of x, is (1-a)U if x 3 D,
otherwise it is U . A reasonable assumption is that C < (1- a)U . The problem is to find x;
and r,, t=12,..,N, such that al demands are met at the minimum total cost. The model can
be formulated as follows:

Min Z :éN[AI (%) + p(x) +h.l - C'rt]

t=1
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st =l g+x-d-n,t=12..,N
,30,t=12..,N
lo =1y =0,

X, I, 2 Oand Integer, t =1,2,...,N

. -0
where | (x)={. 7
10 otherwise

1@-a)jux %D
% Ux, otherwise

p(x;) = (1)

The purchasing cost function which is depicted in Figure 1 is a time independent and
piecewise linear function.

p(x) 1

|

v

Figure 1. The purchasing cost function

3. THE PROPERTIES OF THE OPTIMAL ORDER POLICY

The properties of an optimal order policy are presented in this section. These properties let us
to develop the optimal branch and bound algorithm in the next section. Property 1 and
Property 2 have proven by Sohan and Hwang [10] but Property 3 and Property 4 are proved
here. At first, we need to define the following terms.

Fraction period: Let period t,t =1,2,...,N, be a "fraction period" whenever x, * D and
X >0.

Resale period: Let period t,t =1,2,..., N, be a"resale period" whenever r, >0.

Sub plan: Let in an optimal order policy I,=1,=0, O£u<vEN, and |, >0 for
u<t<v. P, ={u+lu+2..,} isdefined asa"sub plan".
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Property 1. There exists an optimal order policy such that each one of its sub plans has the
following properties:
1-1-  Itincludes at most one fraction period.
1-2-  Itincludes at most one resale period.
1-3- It does not include both fraction period and resale period.
Property 2. If any resale occursin SP,,, then u +1 is the resale period.

Property 3. Let f,, be a fraction period in SP,, and I, =ma£x{t|xt >0}. Then
' U<tEv
f

u,v

Proof. Assume on the contrary that f,, <I,,. By Property 1-1, wehave x, =D . Since

u,v:*

fuy isafraction period, then x; * D.Let P; and R bethe unit purchasing price for the

lots x; and X, respectively. Decrease x; by 1 and also increase X, by 1 (it is possible

since |, >0 for f,, £t<I,,). The net decrease in the objective value of the optimal order
lyo-1

policy is Py - R+ é h . If it is positive, the optimality is contradicted and the proof is

i=f,,

completed, otherwise, we have
R, P2 ah )

In this case move the ordering of period I, to period f,, in other words, increase X

by x_and omit the ordering at |, . The net decrease in the objective value of the optimal
lyo-1
order policy is at least A+x (R - P - é h;) which is positive by (2). This contradicts
S o=t
the optimality, and the proof is completed. o
Lemma 1. Let N(u,t), OEu<t£vE N, be thetotal number of ordering occurred from

u+1tot when SB,, hasaresale period and r(u,v) betheresaleamount at u+1 inthiscase
(i.e. r(u,v)=r,,; ). Wehave

éstj+1 + r(U,V) 8
e—

N(u,t) = (©)
& D g
édv . u

() = 4D - dy @
e~ u

Proof. If SP,, has aresale period, then x, 1 {0,D}, t=u+Lu+2,...,v, by Property 1-3.
Therefore, to cover the demands of periods u+Lu+2,..,t, it iS necessary that
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+r +r ..
N(u,t) 3 é“ﬂT(uv)g- If N(u, t)>e“+1T(uv)g, then 1, >D, but this incurs an

e ¢ e U
additiona inventory holding cost and contradicts the optimality. Now, Let n be the tota
number of ordering occurred through SP,,. Since there is no fraction period in SR, by

édv., u
Property 1-3, we have r(u,v)=nD-d;. Since I,=1,=0, we have n3 éd“—+1u If

6Dy

é

n>éd“T+1u, then r(u,v) >D which contradicts the optimality by the assumption of
e~ u

C <(1- a)U and the proof is complete. o

The following property can be derived from previous properties.

Property 4. In the optimal order policy each sub plan like SR,
the following forms:

4-1- 1, =0, x=d'-1_, ad xI1{0D} for u+1lf£tfv, ttl,,, where

luy = max{j|x; >0
u<j£v

4-2- 1, =r(u,v) and x 1 {0,D} for u+1£t£v where r(u,v) isobtained by (4).
Proof. By Property 1 SP,, has a most one fraction period; therefore, x 1 {0, D} for

Ofu<v£ N, hasoneof

UV’

U+1E£tEv, t1 1. If 1, =0, then x| =dl\:,v - 1},,-1 since |, isthe last period in which
an ordering occurred and |, =1, =0. Consider thecase r,; >0. By Lemmal r,,; =r(u,v)
and by Property 1-3 x, 1 {0,D} therefore, the proof is complete. o
Corollary 1. If SB,, has aresale period , i.e. r,,; >0, the set of orders occurred through
SR, is F(u,v) where
F (u,v) =[(D,r(u,v), (D,0), (D,0),...,(D,0)] (5)

Such that |F (u,v) = N(u,v) andthe i, i =1,2,...,N(u,v), ordering of F (u,v) occurred at
period t(i), u+1£t()£v where t() =u+1 and

ti)= max {j|(i- YD~ r(uV)* d};y (6)
u+2£ jEv

Proof. The number of ordering occurred through SP,,, the amount ordered and the
amount resole are determined by Property 4-2. Since |, =0, itisobviousthat t(1) =u+1. Let

t(i)= j. The remaining inventory at the beginning of period j is (i- )D- r(u,v) - dqul
Since backlog is not permitted (i- 1)D- r(u,v)3 dJ;}. On the other hand to reach the

u+l -
minimum inventory holding cost, an ordering must occur only when the remaining inventory is
not sufficient enough to cover the forward period. This means that
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t(i) = nz1£ax£{j [(i-DD- r(u,v)3 dd;i} and the proof is complete. o
u+2£ jEv

To determine whether resale is economical or not when the order size differs from D and
to reach an upper bound for the resale amount an order size break point is defined. This break
point is denoted by D, ¢ and is calculated by Eq. (7):

Dos = —(1-5 ?UC- o (7

If quantity x, Dy5 £x £ D, is to be acquired, then it is more economical to purchase D
unitsand resell D - x. The next lemma obtains an upper bound for the resale amount.

Lemma 2. For the resale period of SR, u+1, wehave O£r,,, £D- Dy5.

Proof. If SR, has no resale period, Property 2 implies r,,; =0 and the proof is complete;
otherwise, assume thet r,,, >D- Dy5. Since x,,; =D by Property 1-3, if D- r,,; units are
purchased directly without any resale, a lower purchasing cost will be incurred, and this is
impossible because SP,, is a sub plan of the optimal order policy. Hence, the proof is
complete. o

Sometimes a sub plan like SP,, may have only one ordering at the beginning of u+1
without any resale. By comparing the objective values, it is possible to distinguish this case
from the case in which SP,, has aresae period. Let Z (u,v) and Z, (u,v) be the objective
values in these cases respectively. We have

v-1
Zoo (V) = A+ AL p(di) + @ M (Al - dis) (8)
t=u+l
v-1
Z,(u,v) =N(u,v).(A+D(1-a)u) + é h (N(u,t).D - r(u,v) - d\yy) - Cr(u,v) 9
t=u+l

where p(dy,;), N(u,j) and r(u,v) are obtained by (1), (3) and (4), respectively. By the
following theorem we are able to construct the optimal order policy which has the above
properties.

Theorem 1. Let (x,r;) bethe optimal order policy inperiod t, t =1,2,...,N..

1-1f 1., 3 d,, then (x,r,)=(00).

2- If 0<l,,<d,, then (%, )1 P where
S ={(dy - 1,.4,0)|[v=t,t+1,., N} E {(D,0)}

3-1f I,, =0, then (x,r,)T S suchthat St ={(x’,rY)|v=t,t+1,.,N} E{(D,0)} where

1) =} (dy',0) if r(t-1v)>D- Dygor z.r (t-1V)° Zg(t- 1Y) g (t-Lv) is
1(D,r(t-1v)) otherwise

obtained by (4).
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Proof. When [, ;3 d; due to a lower inventory holding cost, the optimality imposes
(%) =(0,0). A sub plan, say SP,,, exists such that tT SP,, and 1£u+1£t£VEN.
When 0<1,, <d; by the definition of SR

uv?

we have t3 u+2; therefore, r, =0 by
Property 2. On the other hand, by Property 4-1 we have x, =d,’ - 1,_; when t is the fraction
period of SP,,, otherwise x, =D, hence (x, 1)1 {(d} - 1,.1,0),(D,0)} for this case. Now, let
l,., =0 therefore, t =u+1 which means that aresale may occur at t. If r(t- Lv)>D- Dys
or Z,(t- Lv)3 Z(t- 1v), then SP,, has no resae period and by Property 4-1 x, =d;’ (if t
is the fraction period) or x =D (if t is not the fraction period); otherwise,
(%.r) =(D,r(t- Lv)) (if SR, has aresale period) or (x.,r,)=(D,0) (if SR, has no resde
period). Hence, for this case, (x.r)1 {(d’,0,(D,0)} if r(t-Lv)>D-Dyg, O
Z,(t-Lv)3 Zg(t- Lv) otherwise, (x.r)T {(D,r(t-1v)),(D,0)} . By v=t,t+1,.,N the

proof is complete. o
By Theorem 1 the possible aternatives for (x,r;), t =1,2,...,N, are reduced to afinite set

of order policies when 1, ; is known. In other words, if I,.;3 d, then (x,r;)=(0,0),
otherwise (x,r,)T S where
180 if 1.4>0
S = (10
iSif 1 =0

Note that in the case that the condition of resale are held (i.e. r(t- Lv)£D- Dy oOr
Z (t-1Lv)<Zgy(t-Lv)) al order policiesin {t,t +1,...,v} are determined by Corollary 1 and
v+1 is the next reordering point. Since | S, [E N- t +2, thereare at most N - t +2 different
candidate for the order policy inperiod t, t =1, 2,..., N, and therefore, the optimal order policy

N
of the problem can be found among at most O (N - j+2)=(N +1)! different aternative
j=1
policies. A branch and bound agorithm is presented in the next section to enumerate these
policies implicitly.

4. A BRANCH AND BOUND ALGORITHM

Now, we are able to construct the sequence of orders in the optima order policy for the
problem. Starting from period 1 and assuming |1, =0, we calculate the set of alternatives for
(X,r, ), or S;. Each order policy in S, like (x,,r, ), covers the demand up to a period, say
t, t3 2, withadefiniteinventory I, , which are obtained by Egs. (11) and (12), respectively.
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t= max {j|x-r3d?t 11
2£j£N+1{J | X -1y 3 di 7} (11)
g =X - 1p- dfl (12)

Period t iscalled a"reordering point" because the remaining inventory (1,.,) is not enough
to cover the demand of any forward periods. Each reordering point has a corresponding partial
policy which is defined as the ordered set of those order policies that cover the demand up to
the reordering point. The corresponding partial policy of t is denoted by P' where

P' =[(x,r;)] inthiscase. Now, having t and I, ;, S, is obtained and for each feasible order

policy (% ,1;)1 S, the corresponding reordering point with its inventory are calculated. This

process is repeated till at least one of the fathoming rules, derived in this section, occurs. In
order to follow this process more easily, we implement it in the form of a search tree which is
formed of nodes and edges. A node in the search tree contains the information of a reordering
point and its corresponding partia policy. This information is summarized in four elements. In

details, each node is denoted by [t,I,_,,Z, P'] where:
t : The reordering point; the period in which the nodeisended to, t =1, 2,...,N
l,.1: Theremaining inventory of the node; obviously 1, ; <d,
P': The partid policy of the node; it is an ordered set of order policies which cover the

demand up to t
Z : The objective value of the node; it is the sum of inventory holding cost, ordering cost

and purchasing cost, including resale income, of the ordersin P'.
For every search tree, we consider [ 1,0,0,f ] as the root node. Each node in the search tree

is formed by branching out another node. The branched node is called a "parent node" and the
other oneis called a"child node".

The agorithm presented for the problem in this paper has two main steps; branching step
and fathoming step which are discussed in the following sections.

4.1. Branching step

Let [k, 1,.1,Z,P¥], k=12..,N, be a node in the search tree such that S¢*f where

St ={(x,") S |x-r+l,,3d}. For eaxch (xr)I S{ a child node denoted by

[t,1,,,Z¢P!] is added to the set of children of [k, 1,_,,Z,P¥] by the two following methods:
1- For r =0 we have

t= max x+1, ,3dd?t
k+1£g£N+1{gI k-1 k }

leg =X+ 1q - dit
P =[PXIi(x,0)]
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t-1
Z6=Z+xp() + A+Q hi(x+1j1- di)
i=k
2- For r >0 thereexists v, v=kk +1,., N, by Theorem 1 such that r =r(k- Lv). In
this case we have
t=v+1
li.,=0
P =[PXIIF (k - ,v)]
Z(=Z+Z (k- 1v)
where F (k- 1v) is the set of order policies occurred through {k,k+1...,v} and is
obtained by (5).

4.2. Fathoming step

Using the two fathoming rules derived in this section, each child node generated in the
previous step is checked for fathoming criteria in the fathoming step. If it is fathomed, then it
is closed otherwise, it is considered as an open node for branching out in the next iteration of
the algorithm. Furthermore, if the partial policy of the node is such that all periods demand are
covered, it is fathomed and the current upper bound of the objective value is updated.

A common rule for fathoming a node in the branch and bound agorithms is to compare its
objective value with the best current objective value. To make this fathoming more efficient in
the minimization problems, a lower bound of the objective value of the policy which includes
the node is compared with the best current objective value. The objective value in this problem
has three elements; inventory holding cost, ordering cost and purchasing cost including resale
income. The two following lemmas obtain a lower bound for these costs separately. Let Z be
the sum of inventory holding cost and ordering cost of the orders occurred in the last N¢
periods starting from period t, t=12,...,N, (obviously N(=N -t +1). Furthermore, let

h=min{h} and d=min{d}. The following lemma which has been proved by
tEiEN tEiEN

Mirmohammadi et al. [5], obtains alower bound for Z .
Lemmad. For I,., =0, t=12..,N ,alower bound for Z is

N® A£ hd

|
_ R
Z, (N¢d, )-_:_e w n (n '1)hd)+Ad(n(D+mhd A>hd 13
i 2 2

«_€AU ENQ . i1 if n&>0
where n = e'Al?l+f]_, n¢= N¢ gﬁ*q}j‘n and d(n9 ::, . .
hd én u 10 if n¢=0
Lemma 5. The minimum purchasing cost including resale income of acquiring x units,
x3 0, is MPC(x) where
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I xu if  XEDgys
MPC(x):1|’DU(1- a)- (D- XC if Dys<XED (14)
% xU(1- a) if x>D

Proof. It follows directly by the definitionof D.. o

Now, by the two previous lemmas we can calculate a lower bound for the objective value
of al policies derived from a special node in the search tree. If this lower bound exceeds our

best current upper bound, the node will be fathomed. Let [t,1, ,,Z, P'] be an open node in the
search tree such that 1£t <N . Furthermore, let h(= min {h; } (the minimum unit holding cost
t£])

per each period through t to the end of planning horizon), d(=min{d; - It'l’t Ei-QN{di}} and
tlE]

Z,, be the best current upper bound for the objective value.

Fathoming rule 1. The node is fathomed if
Z+Z, (N-t+1d¢hg+MPC(d" - I, ,)>Z,. Furthermore, when t =N it is fathomed if
Z+A+MPC(dy - I.1) > Z,

Proof. To reach a feasible order policy by this node, we need at least dN - 1, , units of
material. The lower bound of the purchasing cost including resale income of this amount of
materials is MPC(d," - 1,.,). Also by Lemma 4, the lower bound of the sum of inventory
holding cost and ordering cost is Z, (N - t+1,d(h( from period t to period N . Note that the
minimum demand and the minimum holding cost per unit in this interval is d¢ and he,
respectively. Therefore, the objective value of all child nodes of [t, 1, ,,Z,P'] will increase at

least by Z, (N- t+1,d¢hg+mPC(dN - 1, ). If

Z+Z, (N-t+1d¢hg+MPC(d - I,,)>Z,, the optimal order policy of the problem can
not be found by branching this node. Fathoming rule 1 is obviously truewhen t =N . o
Another way to fathom a node is to compare it with the existing nodes in the search tree.
When two nodes end to a period with the same inventory, branching out the node with larger
objective value will not result in the optimal order policy of the problem and it is fathomed. In
the presented algorithm most of the nodes end to a period with the same inventory and simply
one of them is fathomed, but in some cases their inventories are not equal. However, we can
calculate an upper bound for the cost incurred while making their inventories equal. Now,

increase the inventory of [t,1, ,Z,P']by I, 2Et<N, 0£1 £d, - I, 4, by changing one of
the orders in P'(without any new ordering). Lemma 6 presents an upper bound for the cost

incurred in this situation.
Lemma 6. An upper bound for the cost incurred by adding | more units to the inventory
of [t,1,.4,Z,P"] without any new ordering is MI(P',1) where
} t-1
MI(P',1)= min }MPC(xi - +1)- % pi(%)+Cr + g |hjy (15)
(.l P = b
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where i isthe period in which the ordering of (x;,r;) has occurred.

Proof. Omit each order (x,r;) in P' and acquire x. - r, + | at the beginning of period i .
Cdculate the change of the total cost. o

MPC(X)
X

Lemma 7 implies a property of which let us to present Fathoming Rule 2.

MPC(x)
X

Lemmat.

is non-increasing in x.

MPC(x+1) MPC(Y

Proof. It is obvious for x3 D and x£ Dy5. By calculating 1
X X

Dys <x<D theresult is obtained.o
Fathoming Rule 2. Consider [t,1,.,,Z,P'] as node 1 and [t,1¢,,Z¢P¢] as node 2,
t=2,3%, N, inasearchtree. Therearetwo possible casesfor |,_; and | ¢, asstated below:

21. 1,_,=1¢,: In this case the node with larger objective value is fathomed. If their
objective values are equal, one of them is fathomed arbitrarily.

2.2. 1.1 * 1¢,: Inthis case one of them is larger than the other one. Let 1., >1¢, 3 0 and
I =1lgq- 18

2.2.1. Node 2 is fathomed if Z £Z°.

- g
22.2. Node 1 is fathomed if Z6+ | Mm't-l)
t T~ 'tF1

2.2.3. Node 1 is fathomed if z¢+MI(P¢,1)<Z, where MI(P¢,1) is obtained by
Eq.(15).

Proof. Since 2.1 and 2.2.1 are obvious, we just consider 2.2.2 and 2.2.3. To prove 2.2.2 let
CH1 be any arbitrary child node branched out from node 1 by an order like (x,r;) . CH1 ends

to a period like k k=t+1t+2,..,N, with |I,, inventory such that

<Z.

l1 =% - Iy + 1.1 - df°1. The objective value of CH1 is
Z+ A+MPC(A "+ lip - Tea) +@ (6 +liea - dohy (16)
i=t

Construct CH2 by branching out node 2 on (x +1,r,) . CH2 ends to period k with exactly
I .1 inventory. The objective value of CH2 is

k-1 _
Z0+ A+MPC(df  +111- 18)+ @ (A + 111 - dDhy (17)

i=t

Let Y=d<1+1,,- I, ;. Weshow that MPC(Y +1) - MPC(Y)<Z - Z¢ by Egs. (16) and
a7). Obviously, MPC(Y +1) - MPC(Y) is equal to
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Y(MPC(Y+I) - MPCW))H MPC(Y +1) which is less than or equal to Iw b
Y +1 Y Y +1 Y +1
. MP -1¢ D
Lemma 7. Since Y +1 3 d, - 1¢,, we have | MP$(:(I+I) g MPCE: . &) \hich is less
dt - It-l

than Z - Z¢ by the assumption of 2.2.2 and the proof is complete for this case. To prove 2.2.3,
note that P! has covered the demands of periods 1 to t - 1with lt.1 surplus inventory at the
cost of Z . On the other hand, Z¢+ MI (P¢,1) < Z states that by changing one of the previous
order policiesin P¢, it is possible to cover the demands of periods 1to t - 1 with I, ; surplus
inventory at a lower cost than Z . Therefore, the optimal order policy of the problem will not

be found by continuing of P' and the proof is complete. o

To illustrate the presented algorithm, an instance of the problem with five periods is
considered with the relevant periods demand given in Table 1. The discount level is D =150
and discount rateis a = 20%.

Table 1. The periods demand of the example

t 1 2 3 4 5
d; 50 80 60 100 40

The ordering cost and holding cost per unit per each period is 100 and 1, respectively. The
net unit purchasing price and the unit resale price are 10 and 6, respectively; therefore, D ¢
becomes 75 for this example. Figure 2 shows the search tree and its nodes for this example.
Each node in Figure 2 consists the data for [t,1,_4,Z, P'] which are defined in Section 4.1.
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Figure 2. The search tree of the example

The shaded part of each node contains the index of the fathoming rule and the index of the
node which is used in the fathoming rule. For example the expression "FR2-1, Node 4" in the
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shaded part of node 13 shows that node 13 has been fathomed by comparing with node 4
using fathoming rule 2-1. The number that is in the north east corner of each node is Node
Formation Number (NFN) which shows the sequence of node generation in the branching
step. The branching of nodes is based on the Width-First-Search. Note that before a node is
branched, it is checked for fathoming.

5. THETIME COMPLEXITY FUNCTION OF THE ALGORITHM

The number of nodes branched out to find the optima order policy determines the running
time of the agorithm. In other words, the worst-case time complexity function of the
algorithm can be calculated by enumerating the maximum number of branched nodes in the
search tree. By defining a graph, called "counter graph”, corresponding to the search tree of a
problem, we are able to enumerate the maximum number of branched nodes in an instance
with N periods.

5.1. The definition of the counter graph

Let T=(V,E) be the counter graph corresponding to the search tree of an instance with N
periods. The set of vertices, V , and the set of edges, E , are defined as follow:
1. The vertex v labeled by (t,1,.;), t=12,..,N, belongs to Vv if and only if thereis a

node in the search tree labeled by [t,1,.;,Z,P'] which is branched out (i.e. it has at
least one child). The corresponding node of v is[t,1, ;,Z,P'] and the corresponding

vertex of the node [t,l, ,,Z,P'] is v. The corresponding vertex of the root node
[10,0,f ] isdenoted by v, and iscalled theroot of T =(V, E).
2. Let v(i V labeled by (t(l,), t(=12...,N,, be the corresponding vertex of node

[t¢],¢ 1, Z¢PY] inthe search tree.
®
2-1- vyvelabeled by 0, belongs to E if and only if 1, =0.

2-2- v(?/ﬂ: labeled by x, - r,, belongs to E if and only if 1,;>0 where v is the
corresponding vertex of the parent node of [t¢l ¢ 1,Z(DPW] and (x,r;) isthe order policy by
which [t¢1,¢ 1, Z¢P] is derived from its parent.

When node [t¢|t¢1,Z¢Pt¢] which has a parent node like [t, 1, ,,Z,P"] in the search tree

(O£t <t(£N) isbranched out, its corresponding vertex v¢ isadded to V . If this node has no
beginning inventory, i.e. 1,4, =0, vC is connected to the root of the counter graph, v, by an

edge labeled by O. If 1, >0 then vC is connected to the v by an edge labeled by x; - r,
where v is the corresponding vertex of [t,1, ,,Z,P'] and (x,r,) isthe order policy by which
[t¢1, 1, Z¢PY] is derived from [t,1,.,,Z,P'], i.e. P¥=[Plli(x,,r,)]. Since x, - r, >0, each
edgein T =(V,E) labeled by O is a pendant edge of v, . Figure 3 depicts the corresponding
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counter graph of the search tree shown in Figure 2.

Figure 3. The counter graph of the example

5.2. The properties of the counter graph

The following lemmas characterizes T =(V,E) more precisely which let us to present an
upper bound for V|.

Lemma 8. Let in, v,vC labeled by x, x3 0, be an arbitrary edge of T =(V,E). Then
x1 {0,D}.

Proof. Let [t,1,,,Z,P'] and [t¢|t¢1,Z¢Pt¢] be the corresponding nodes of v and v,
respectively. If 1., =0 then v=v, and by the definitionof T =(V,E), x=0 and the proof is

complete. Let 1,4, >0. The ordering occurred at t isin P', i.e. (x,r)T P If r, >0, then
lie; =0 by part 2 of Section 4-1 which contradicts I, >0. For r, =0, we have

x, =d®- 1, or x, =D by Theorem 1. Thefirst case contradicts 1, >0 and the second one
imposes x =D therefore, the proof is completefor 1, >0. O

Lemma 9. Each vertex isuniquein T = (V, E).

Proof. Assume on the contrary that a counter graph T =(V,E) has two vertices like
v,v(l V which are labeled by (t,1,,), 1Et£N, 1,23 0. Since the corresponding nodes of
v and vC end to t with equal inventory I,_,, one of them is fathomed by Fathoming Rule 2.1

and it is never branched. Hence, either vi V or vti V and the proof is complete. o
Lemma 10. Each vertex, except theroot of T = (V,E), has at most one child.

Proof. Assume on the contrary that there is a vertex vi V, v v,, which has two or more
pendant edges with different labels. Let a and b be their labels. Since at b and a,bl {0, D}
by Lemma 8, one of them is 0 and the other one is D .But it is impossible because the edge
labeled by 0 is a pendent edge of the root of v, by the definition of T = (V,E) and the proof is
complete. o

Lemma1l. Theroot of T=(V,E), vy, hasat most N children.

Proof. The number of pendant edges of v, determines the number of its children. The
number of pendant edges of v, labeled by a positive number x, isat most 1 by Lemma8. By
the definition of T =(V,E), the number of nodes with zero inventory branched out in the
search tree, determines the number of pendant edges of v, labeled by 0. From all nodes in the
search tree with zero inventory which are ended to period k, 2£k £ N, a most one node is
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branched out and the other nodes are fathomed by Fathoming Rule 2-1. Since 2£k £ N, there
area most N - 1 nodes with zero inventory which are branched in the search tree; hence, the
maximum number of pendant edges of v, is N- 1+1 in T =(V, E) and the proof is complete.

O

Lemma 12. Let H be the height of T=(V,E), then H £min } N and

t

[(» )] )CD
UTQ-
(e Y

T

[V IENH +1.

Proof. Let v labeled by (t,1,.,),t£N,l,.;3 0, bealeaf of T which has the longest path
from the root of T . Let this path and its length be denoted by LP and |LP |, respectively,
then H =|LP|. Since each edge in LP represents an ordering and each ordering covers the
demand of at least one period therefore, H =| LP JE N .On the other hand since t £ N , we have

dfl +lg < le (18)

Since by Lemma 8 each edge of LP except the root pendant edge is labeled by D , we
have (|LP|-1)D £di*+1, . Therefore, by (19) and the fact that |LP| is an integer we

&N U _édNu L
have |LPIE éD—a and H £m|n{éFa, N}. Now, let R(i), i=012,...,H, be the tota
e~ ¢ el

number of the verticesin the i level of T.Wehave R(0O)=1and R()EN, i=12,...,.H, by

H
Lemma 11 and Lemma 10. Therefore, |V [=R(0)+& R()£NH +1 and the proof is
i=1
complete. o
Without loss of generadlity, the worst-case time complexity function of the algorithm with
only Fathoming Rule 2-1 and Fathoming Rule 1 is considered here, since these rules are more
effective than the other ones. However, the algorithm with al fathoming rules is not more
complex than what is considered here.
For the rest of this section we need to define the following notations.
NBN : The maximum number of branched nodes
MCN : The maximum number of the children of a branched node
tg : The maximum time required for generating a child node

tr, : The maximum time required for checking anode by Fathoming Rule 1
tr, : The maximum time required for checking a node by Fathoming Rule 2.1.

We know that by Lemma 12, NBN £ N? +1and by Eq. (10) S, £ N +1 for k=1,2,...,N,
therefore, MCN £N +1. Furthermore, al parameters tg,tr;, tg,are constant and
independent of the problem parameters.

5.3. Theworst case time complexity function

By the properties of the counter graph described in the above lemmas Theorem 2 is followed
which presents an upper bound for the worst-case time complexity function of the presented
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algorithm.
Theorem 2. Let f(N) be the worst-case time complexity function of an instance of the

problem with N periods. Then, f(N)=0(N?).

Proof. The maximum total number of nodes generated in the search tree to find the optimal
order policy in an instance with N periods is NBN” MCN £ (N2 +1)(N +1). On the other
hand, the maximum time spent for each node in the search tree is tg +tg; +tg, Which is

constant. Therefore, f(N)£ (N2 +1)(N +1)(tg +te, +tr,) Wherethe last termis O(N*) and
the proof is complete. o

6. COMPUTATIONAL EXPERIENCE

In order to demonstrate the computational efficiency of our algorithm, it has been coded in
C++ 6.0 and the average CPU times required for solving some randomly generated problems
have been gathered.

6.1. Experimental design

For the experimental design, we have adopted the framework of control factors in
Mirmohammadi et a. [5]. There are two factors which characterize the demand environment
of the problems, the number of periods in the planning horizon (N) and the coefficient of
variation of demand (CV). The coefficient of variation (CV) measures the period-to-period
variation in demand. It is the ratio of the standard deviation of the demand to the average
demand. The CV values used for this experiment are 0.29 and 1.85. The values of N are 24,
124, 224,..., 924 and 1024. The ratio of the discount level to the average demand (D/R) is set
to 2 and the discount rate, a , is set to 10%. The ratio of the unit resale price to discounted
C

@-a)
0.15, 0.3, 0.45, 0.6 and 0.75. The values of other parameters used in this experiment are listed
in Table 2.

unit net price (AR = ) describes the attractiveness of resale and has the values of

Table 2. Values of parameters used in the experiment
Ordering cost (A) =92
Inventory holding Cost h; =2/ period /unit," j =1,2,...,5

unit net price U =500
Average demand (R) =92

For each combination of N, CV and AR, 20 instances are randomly generated from a
truncated normal distribution with mean of 92 and variance obtained by CV parameter, to
provide 2200 test problems for the experiment. The performance criterion is the CPU time (m.
sec.) on the Pentium(R) 4 CPU 3.41 GHz with 2.00 GB of RAM. Table 3 contains the results.



200 S.H. Mirmohammadi, Sh. Shadrokh and K. Eshghi
Table 3. Average CPU time of each comhination of N, CV and AR
N AR=0.15 AR=0.3 AR=0.45 AR=0.6 AR=0.75
CV=029 Cv=185 CV=029 CV=185 CV=029 CV=185 CV=029 CV=185 CV=029 CV=185

24 0.75 0 0 0.75 0 0.75 0 0.75 0 155
124 7105 56.25 734 59.35 69.55 55.45 71.05 56.2 7185 56.25
224 40865 34765 425 34845 43595 34765 42345 3523 419.4 3484
324 124365 10171 12562 102275 12566  1039.05 125225 125225 126245  1029.65
424 29532 23805 289545 239765  2907.8 237505  2899.1 238435 28898  2378.05
524 55759 456945 553615 45266 552475 45616 553205 451645 55663  4549.95
624 947965  7738.25 9640 77093 95125 77743 94818 77226 94461 77345
724 150757 1228045 1548895 1207115 14819.75 1230635 15017.1  12050.7 149928  12194.6
824 2250615 180515 226115 183764  22457.05 1802955 22446.65 18048.65 2239155 18060
924 3191245 2575865 322548 260179 322351 2518425 3206556 256134 3186945  25645.3
1024 4431645 3584835 442642 3561485 4438115 355336 442687 35807.65 444282 3513895

6.2. Analysis of test results
The following summarized conclusions are derived from the experiment:

1.When N increases constantly from O to 1024, the CPU time increases with the

maximum order of 3. In other words, the time complexity function of the algorithm
when N changes from 0 to 1024 is O(N3) in this experiment which confirms

Theorem 2. The CPU time and the equation of the trend line is depicted in Figure 4
for Cv=0.29 and AR=0.15.

CPU time has no stable pattern versus the variation of AR.

2. The CPU time decreases when CV increases from 0.29 to 1.85 for each level of N and
AR.
3. It seems that the attractiveness of resale has no significant effect on CPU time since the
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Figure 4. CPU timeincrease with CV=0.29 and AR=0.15

7. CONCLUSIONS

The properties of an optimal order policy for the dynamic quantity discount problem with
resale in single price break points have been discussed in this paper. On the basis of them, an
optimal agorithm based on branch and bound approach has been presented for the problem.
By defining a rooted tree graph corresponding to each search tree called counter graph, it has
been shown that the worst-case time complexity function of the presented agorithm is

O(N?®). The efficiency of the presented agorithm is shown by solving 2200 randomly
generated problems. Experimental results confirm that the time complexity function of the
presented algorithm is O(N3) for the adjusted parameters in the experiment.
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