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ABSTRACT 
 

Ant colony optimization algorithms (ACOs) have been basically introduced to discrete variable 
problems and applied to different research domains in several engineering fields. Meanwhile, 
abundant studies have been already involved to adapt different ant models to continuous search 
spaces. Assessments indicate competitive performance of ACOs on discrete or continuous 
domains. Therefore, as potent optimization algorithms, it is encouraging to involve ant models to 
mixed-variable domains which simultaneously tackle discrete and continuous variables. This paper 
introduces four ant-based methods to solve mixed-variable problems. Each method is based upon 
superlative ant algorithms in discrete and/or continuous domains. Proposed methods’ performances 
are then tested on a set of three mathematical functions and also a water main design problem in 
engineering field, which are elaborately subject to linear and non-linear constraints. All proposed 
methods perform rather satisfactorily on considered problems and it is suggested to further extend 
the application of methods to other engineering studies. 
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1. INTRODUCTION 
 

Inter-basins water transfer mains demand significant construction and operational costs. 
Optimum design of such infrastructures has received considerable attentions during the last 
decade. Most of these researches have employed relevant techniques to minimize the capital 
and operational costs associated with large capacity water conveyance systems ([1-4]). Martin 
[5] successfully used dynamic programming to optimally design a pressurized water main. 
The selected design specifies the number and the size of pumping stations, diameter, and 
pressure class of the pipeline at the beginning of each stage interval over the planning period. 
Afshar et al. [6] developed a DP  model to optimally integrate hydropower plant into a water 
supply main. In order to provide a rational basis for narrowing existing potential alternatives 
into a final alignment corridor, a Geographical Information System (GIS) based route selection 
process was introduced by Luettinger and Clark [7].  

During the last decade the evolutionary and meta-heuristic algorithms, such as Genetic 
Algorithms (GAs), Simulated Annealing (SA) and more recently Ant Colony Optimization 
algorithms (ACOs) have received considerable attentions. Ant colony optimization algorithms 
have been applied successfully to solve various combinatorial optimization problems ([8-13]). 
An overview of ant algorithms may be found in an interesting paper by Dorigo and Di Caro 
[14]. In the area of water resources and hydraulics engineering, Abbaspour et al. [15] 
employed ACO algorithms to estimate hydraulic parameters of unsaturated soil. Mair et al. 
[16] used ACO algorithms to find a near-optimal solution to a water distribution system. They 
discussed that the ACO algorithms may form an attractive alternative to GAs for the optimal 
design of water distribution systems. Abbasi et al. [1] used ACO algorithm to optimally design 
a water conveyance system under steady state condition with uniform and predefined 
discretization schemes.  

Although ACOs have basically been presented to solve the problems with discrete search 
spaces, discretization process was proposed later in favor of continuous domains. Jalali et al. 
[17] employed the concept of multi ant colonies to randomly discretize the continuous search 
space. The method was successfully applied for operation of a multi-reservoir system. On the 
other side, many researchers have attempted to extend the concept of the basic ant algorithms 
into continuous domains. Bilchev and Parmee [18] proposed Continuous ACO (CACO) as the 
first method directly using ACO in continuous search space. Later studies resulted in 
Asynchronous Parallel Implementation (API) algorithm [19], Continuous Interacting Ant 
Colony (CIAC) [20] and ACOR [21]. Afshar [22] proposed and applied a so-called parameter 
free continuous ant colony optimization algorithm for the optimal design of storm sewer 
network under constrained and unconstrained approaches. Recently, Madadgar and Afshar 
[23] introduced the improved ACOR in which the adaptation operator and explorer ants are 
employed to promote the search results. The performance of improved version was 
satisfactory on a set of mathematical functions and also the optimal operation of a hydropower 
reservoir problem. 

In contrast to continuous spaces, very limited studies have attempted to solve the mixed-
variable problems (with both continuous and discrete decision variables) by means of ant 
methods. In a recent study, Schlüter et al. [24] extended continuous ant approach to mixed 
integer search space. Their algorithm, ACOmi, was implemented on mathematical benchmark 
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problems and then on a load-bearing thermal insulation system as an engineering problem. 
This paper develops and compares the performance of a number of ant-based approaches 

for mixed-variable problems. The proposed algorithms are initially tested on three 
mathematical problems and then applied to a mixed-variable problem in water resources 
engineering. The optimum design of a large scale irrigation main and inter basin water transfer 
pipeline is considered and the performance of introduced methods are compared.  

 
 

2. ANT COLONY ALGORITHMS; AN OVERVIEW 
 

An interesting and very important behavior of ant colonies is their foraging behavior, and in 
particular, their ability to find the shortest route between their nest and a food source. The path 
taken by individual ants from the nest to the food source is essentially random [10]. However, 
when traveling, ants deposit a substance called pheromone, forming a pheromone trail as an 
indirect means of communication. As more ants choose a path to follow, the pheromone on the 
path builds up, making it more attractive for other ants to follow. 

In the ACO  algorithm, artificial ants are permitted to release pheromone while developing 
a solution or after a solution has been fully developed, or both. The amount of pheromone 
deposited is made proportional to the goodness of the solution an artificial ant develops. Rapid 
drift of all ants toward the same part of the search space is avoided by employing the 
stochastic component of the choice decision policy and the numerous mechanisms such as 
pheromone evaporation, explorer ants, and local search.  

In order to successfully apply the ACO  algorithms to combinatorial optimization problems, 
it is recommended to project the problem on a graph. Consider a graph G= (D, L, C), in 
which D, L, and C are the sets of decision points, options and costs associated with option L, 
respectively. A feasible path on the graph is called a solution and the path with minimum cost 
is called the optimum solution.  

The transition rule used in the original ant system is defined as [10]: 
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where ( )tkPij ,  is the probability that ant k selects option ijl for decision point i at iteration t; 

)(tijτ  is the concentration of pheromone on arc (i, j) at iteration t; 
ij

ij c
1

=η  is the heuristic 

value representing the cost of choosing option j at decision point i; Nk (i) is the feasible 
neighborhood of ant k  when located at decision point i ; and α  and β  are two parameters 
that control the relative importance of the pheromone trail and heuristic value. The heuristic 
value ijη  is analogous to providing the ants with sight and is sometimes called visibility. This 
value, in static problems, is calculated once at the start of the algorithm and remains 
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unchanged during the computation process. 
To simulate pheromone evaporation, the pheromone evaporation coefficient (ρ) is defined 

which enables greater exploration of the search space and minimizes the chance of premature 
convergence to sub-optimal solutions upon completion of a tour by all ants in the colony. The 
global trail updating is done as follows: 

 
 )(.)().1()1( ttt ijijij τρτρτ ∆+−=+  (2) 
 
Where )1( +tijτ is the amount of pheromone trail on option j  of the i th decision point at 
iteration 1+t ; 10 ≤≤ ρ  is the coefficient representing the pheromone evaporation and 

)(tijτ∆  is the change in pheromone concentration associated with arc ( )ji,  at iteration t . The 
amount of pheromone )(tijτ  associated with arc ( )ji,  is intended to represent the learned 
desirability of choosing option j when at decision point i . 

Various methods have been suggested for calculating the pheromone changes. The method 
used here was originally suggested by Dorigo and Gambardella [25] in which only the ant 
which produced the globally best (gb) solution from the beginning of the trail is allowed to 
contribute to pheromone change:  
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Where 

*
gbkG  is value of the objective function for ant *

gbk , which is the ant with the best 
performance within previous iterations. 

Satisfactory performance of ACOs in discrete search spaces persuaded the researchers to 
develop ant-based algorithms for continuous search spaces. Initial attempts suggested the 
conversion of original continuous search space into a discrete one. The discrete domain is 
specified by a finite set of allowable options at any construction steps. As the continuous 
domain is replaced by a discrete one, the resulting solutions may lose some of the potentially 
good solutions according to the size of the finite sets. Since the coarse discrete space leads to 
worse solutions than a fine one, there would be a tendency to generate more populous discrete 
domains.  

Jalali et al. [17] proposed a new multi-colony method which utilizes a multi-colony system 
to properly limit the searching process into the high-quality regions. Different colonies with 
heterogeneous discrete patterns help to provide a non-homogeneous and dynamic discrete 
domain.  

Recently, probability density functions (pdfs) have been used to generate real values for 
continuous variables. The approach seems efficient to search through continuous spaces as it 
almost covers the whole domain and assigns a probability value to any points of the space. 
Since the assigned probability values (via pdf) differ from point to point, it is more convenient 
to model the variations of pheromone amount along the search space. In other words, the area 
around peak point of pdf receives more chance to be selected rather than those around the tail. 
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It means that the pdf provides the capacity to search entire decision space considering the 
varieties in attraction of different areas. In order to simulate the pheromone model, a single pdf 
may be used to represent the probabilities of different parts in search space. The proposed pdf 
at i th construction step may be defined as [26]:  
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Where minx  and σ  define the mean and standard deviation of the pdf associated to the i th 
construction step, respectively.  

The mean value of the distribution at i th step is equal to the decision value generated by 
the global best ant up to the current iteration. The variance of the pdf describes the 
concentration of ants around the best found solution and is defined as follows [26]: 
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Where, bestf  and jf  are the fitness values associated to the best and the j th ants in the 
population, respectively; and k  is the population size. As is clear, the concentration of ants 
around the best solution determines the standard deviation of pdf. In any iteration, ants 
generate the continuous values according to Equations 4 and 5 except in the first iteration, 
while all ants produce completely random values. Since a single pdf has only one peak point, 
the uni-pdf method is not capable to simulate the areas with multi-promising regions. To 
overcome this shortcoming, the Gaussian kernel pdf (Figure 1), which is weighted sum of 
several individual Gaussian functions ( )xg i

l , has been suggested [21]: 
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where k is the number of single pdfs making the Gaussian kernel pdf at i th construction step; 
ω , iµ  and iσ are the vectors of size k define weights, means and standard deviations of 
individual Gaussian functions at i th construction step, respectively.  
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Gaussian Kernel
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Figure 1. Example of a Gaussian kernel pdf including 4 Gaussian functions on the interval (−3, 3) 

(adopted from Madadgar and Afshar [23]) 
 
 

3. PROPOSED ACO-BASED METHODS FOR MIXED-VARIABLE PROBLEMS 
 

In contrast to discrete and/or continuous search spaces, few studies have already tried to extend ant 
based approaches to mixed variable problems [24]. This article attempts to propose and structure 
four different ant-based algorithms (methods A-D) for mixed-variable domains. Each method 
combines different ant algorithms developed for either discrete and/or continuous search spaces, 
except Method D which is inherently proposed for mixed-variable problems. 
 
Method A 

The first algorithm combines multi-colony ant approach of Jalali et al. [17] with improved 
version of ant system [27]. The multi-colony ant approach is used to develop a heterogeneous 
and dynamic discrete scheme into the original continuous space which will lead the searching 
process toward the high quality regions of continuous space. 

Figure 2 illustrates a three-colony system when the information exchange process is 
executed. As shown, each colony has its own discrete scheme and the agents conduct the 
search process in the consequent discrete space. The information exchange technique is also 
beneficial to concentrate finely around the best solution. Once the information exchange 
criterion is satisfied, the best solution of any colonies is determined. Afterwards, the search 
space for any decision variable at each colony is limited into the maximum and minimum 
values obtained by the best solutions of all the colonies. Then, the new search space, which 
becomes obviously smaller, is transformed into discrete space with regard to the specified 
pattern of each colony. As is clear, searching via multi colonies, including non-homogeneous 
discrete spaces, provides broad and fine exploration in continuous domains.  
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Figure 2. Example of a three-colony system in multi-colony approach a) before, b) through, c) 

after information exchange process (Adopted from Jalali et al. [17]) 
 
To accomplish search process through discrete pattern, regardless to the variable type 

(either discrete or continuous), the improved version of ant system [27] is considered. Since 
original ACOalgorithms suffer from the premature convergence to the local optima, or 
stagnation point, some studies have been conducted to troubleshoot such undesirability. Jalali 
et al. [28] employed a combination of explorer ants, local search, and the pheromone 
promotion (PP) techniques to minimize the possibility of the premature convergence 
syndrome, however, the results of 10 runs with different seeds revealed relatively high 
standard deviation, which may be considered as an index of results diversity. Therefore, Jalali 
and Afshar [27] introduced pheromone re-initiation (PRI) and partial path replacement (PPR) 
mechanisms to further reduce the possibility of premature convergence. Thus, the improved 
version of ant system benefits from PP, PRI, and PPR techniques in order to attain a 
satisfactory performance of AS  algorithm. 

 
Method B 

The second proposed algorithm combines the uni-pdf ant approach [26] with modified ant 
system [28] regarding to construct, respectively, continuous and discrete values for associated 
variables. The considered modified ant system utilizes explorer ants, local search, and the 
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pheromone promotion ( )PP  mechanism as the major means to prevent falling in local optima. 
 
Method C 

Deficiency of single pdf function in continuous search spaces supports the application of 
Gaussian kernel pdf which prepares efficient pheromone modeling of a multi-promising area. 
Substituting the single pdf function with Gaussian kernel pdf forms the main difference 
between the second and third developed method for mixed domains. For discrete decision 
variables both the second and third methods use the modified ant system [28].  

The Gaussian kernel pdf is a weighted sum of several individual pdf functions (Eq. 6). 
Defining the means and standard deviations of individual Gaussian functions at i th 
construction step is executed due to an updatable archive. The archive T stores a certain 
number (k) of best solutions. In an n-dimensional problem, the archive keeps the values of n 
variables associated with any selected solution s1 . Pheromone updating is accomplished by 
adding the set of new superior solutions to the solution archive and in contrary, removing the 
same number of inferior solutions in order to keep the total size of the archive unchanged. 

The shape of the Gaussian kernel pdfs are described by the vectorsω , iµ , and iσ  which 
are determined by the solutions of archive. 

At i th construction step, the vector iµ , associated to the Gaussian kernel pdf ( iG ), is 
made of the values of i th variable of the solutions in the archive.  

After a complete iteration, all solutions (either in the archive or currently constructed) are 
ranked according to their fitness value. In the next step, k  superior solutions fill up the archive 
and the rests will be omitted (i.e., solution ls has rank l ). 

The weight lω of solution ls  is calculated by a Gaussian function as [21]: 
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q  ( )0>  is a tuning parameter, the value of which is highly affect the convergence rate of 
algorithm. Smaller the values, more fast the convergence speed and vice versa. 

To prepare easy sampling from Gaussian kernel pdf, each ant starts the construction 
process by choosing exactly one solution of archive. Then it uses the Gaussian functions 
associated with the chosen solution for all n  construction steps. The probability of choosing 
ranked solution l  (and consequently Gaussian functions l ) is proportional to the weight of 
Gaussian function l  (Eq. 7)  

For step i , i
lσ  is calculated as [21]: 
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Where ( )0>ξ  is a parameter which behaves similar to the coefficient of pheromone 
evaporation in ACO .  
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Method D 

Madadgar and Afshar [23] suggested an adaptive process to adjust the value of parameter q  
during the successive iterations in order to conduct an efficient searching through decision 
space. The adaptation on q helped the method to effectively benefit from both exploration and 
exploitation concepts. They also employed the explorer ants to execute finely local search. 
These special ants minimize the chance of trapping in local optimums and premature 
convergences. They proposed a new ant model, which is adapted to tackle the problems with 
mixed-variable search space. This model is based on the improved version of continuous ant 
algorithm [23] and is considered here as the fourth method. The model initiates the solution 
construction process through the genuine or virtual continuous spaces. In other words, the 
model deals with all variables as continuous ones. Afterward, the practicable values of 
discrete variables are gained regarding to a transformation from associated virtual continuous 
space into the original discrete one. The performance of the algorithm was tested on three 
mathematical functions and a forced water main design problem.  

Table 1 illustrates a quick review on the proposed and/or nominated methods and their 
approaches in treating continuous and discrete variables.  

 
Table 1. Identification of four ant-based methods proposed for mixed variable problems 

Applied Algorithms  

Continuous Variables Discrete Variables  

Multi-Colony model 
(Jalali et al. [17]) 

ACSgb-PP-PRI-PPR 
(Jalali and Afshar [27]) Method A 

Uni-pdf model 
(Pourtakdoust and Nobahari [26]) 

ACSgb-PP 
(Jalali et al. [28]) Method B 

Multi-pdf model 
(Madadgar and Afshar [23]) 

ACSgb-PP 
(Jalali et al. [28]) Method C 

Multi-pdf model 
(Madadgar and Afshar [23]) 

Multi-pdf model 
(Madadgar and Afshar [23]) Method D 

 
 

4. APPLICATION OF METHODS 
 

This section tests and compares the performances of the methods on a set of mathematical test 
functions and a forced water main design problem. The section is followed by profound 
discussion on obtained results. 

 
4.1. Test functions 

A set of three mathematical functions with mixed-variable domains are employed to survey 
the performance of presented four ant-based methods in mixed-variable problems. Table 2 
lists the functions along with according global optimums. Test functions are taken from 
Yiqing et al. [29]. These complicated functions have already been solved by some other 
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evolutionary algorithms ([30], [29]), and hence, a comprehensive judge on the performance of 
applied algorithms may be attained by comparison between the results.  
 

Table 2. Summary of test functions 

Global Optimum Mathematical Formulation 
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To have a sound judge, a certain degree of convergence is determined as stop criterion for 

all four methods. This is the same criterion that has been applied in other researches [29]: 
 

 kkff kkk ∆>∀<− −
∆− ,10 5

 (9) 
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In which, kkk ff ∆−,  are the objective values of the best-found solutions within any 

consecutive thk  and ( )thkk ∆−  iterations. The iteration interval is assumed 50=∆k . The 
termination criterion indicates that if the objective values of the best solutions in consecutive 
iterations with an interval of 50=∆k  remains close enough to each other, the desirable 
convergence of the employed algorithm is assumed to be achieved.  

Table 3 briefly shows the performance of proposed methods on test functions. For each test 
function and employed method, the mean number of function evaluations and the percentage 
of successful executions over all independent runs are reported. Successful executions are 
those converge to the optimal solution of considered problem. The reported values are 
obtained after 100 independent executions.  

 
Table 3. Performances of methods A-D on mathematical test functions 

Method D Method C Method B Method A Problem 

576/100 781/95 1648/80 9000/100 1 

763/100 1407/90 1963/96 240000/90 2 

761/97 1264/100 2437/100 75000/100 3 

 
In other studies ([30], [29]), some non ant-based methods have been employed to solve 

these test functions, and the reported results are presented in Table 4. These results are also 
based on 100 independent runs of applied optimization methods. 

 
Table 4. Performances of non ant-based optimization methods on test functions 

R-PSO_c 2 Original PSO 2 
M-SIMPSA 1 GA 1 Problem 

3500/100 −3 14440/100 13939/100 1 

4000/100 −3 42295/100 22489/100 2 

30000/100 30000/80 63751/97 102778/60 3 
1 Costa and Olivera [30] 
2 Yiqing et al. [29] 
3 All executions were unsuccessful 

 
Among ant-based methods, the last method (method D) performs much better than others, and 

methods B and C are appeared competitive approaches. This may partially be due to approach 
taken by methods B-D to treat continuous variables. Methods B-D all employ the continuous-
natured ant approaches in dealing with continuous domains. Method B benefits from uni-pdf 
approach [26], and methods C and D uses the improved multi-pdf method [23]. However, method 
D achieved the termination criteria in remarkably less number of function evaluations than other 
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algorithms. This may rise from the sampling the search spaces regardless the variable type which 
may cause model D to proceed in both domains with rather equal paces. Note that the improved 
version of ACOR [23], as the main core of method D, is a potent method, by itself, in continuous 
optimization problems. Method A converges to global optimum in most of executions but within 
great number of function evaluations in comparison with the rest three methods. It treats the 
continuous variables through discrete-scheme domains. Probably, this causes method A to 
converge towards optimum solutions in quite low rate.  

The results obtained by some non ant-based methods in Table 4 indicate the remarkable 
performance of applied ant approaches in locating near optimal solutions. The only 
competitive method in Table 4 is R-PSO_c [29] which could satisfy the stop criterion in rather 
small number of function evaluations. It performs better than Method A in Table 3, as well. 
As shown, Original PSO could not successfully converge to global optimums in an even one 
execution over 100 runs in problems 1 and 2. 

Consequently, the proposed ant-based approaches are investigated as efficient methods for 
considered test functions in mixed variable domain. To further illustrate the performance of 
proposed methods as alternative approaches, it is strongly suggested to apply these methods to 
complex optimization problems specifically in engineering studies. 

 
4.2. Water main design problem 

To acquire a comprehensive perception of proposed methods’ performance, a mixed-variable 
optimization problem in water engineering, a forced water main design problem, is employed 
and discussed in following sections. The problem includes a pipeline system with pre-defined 
layout, nodes, and segment lengths. Constant flow of water is supposed to be conveyed 
through the nodes; while the piezometric head at all nodes must be continuously kept above a 
minimum requirement. The nodes are possible to be assigned pump stations. The pipe 
diameters and pumping heads in potential stations are to be determined through an 
optimization model. In other words, the model is to find the best combination of pipe 
diameters and pumping heads through the system. Model’s objective is defined as minimum 
total annual cost including the initial investment and operational costs of the conveyance 
system (Appendix):  
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In which, )( nn hpC  and )( ii DC  are the cost functions associated to pumping head at node n  

 and pipe diameter in segment i , respectively. nhp  is the pumping head at node n ; iD  is the 
pipe diameter in segment i  ; NN  is the number of nodes; and NR  is the number of reaches 
(segments). Certainly, the number of nodes ( )NN  is equal to 1+NR .  

The constraints of the model are presented as follow:  
 

 NRiVVV i ,...,1maxmin =≤≤  (11) 
 
 NRiDDD i ,...,1maxmin =≤≤  (12) 
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 NNnhhh n ,...,1maxmin =≤≤  (13) 
 

Where, iV  is water velocity at reach i ; nh is the piezometric head at node n ; and 

maxminmaxmin ,,, hhVV are the minimum and maximum allowable velocities in all reaches and 
minimum and maximum allowable piezometric head at all nodes, respectively. Since the pipe 
diameter in each segment and according flow velocity are inherently correlated via water flow 
( )Q equation, it is applicable to determine the allowable set of pipe diameters regarding to the 
allowable range of velocities for a given water flow ( )Q  in the system. If so, the velocities will 
be implicitly fallen within allowable range, and the only remain constraints will be those on 
pipe diameters (Eq. 12) and piezometric heads (Eq. 13). 

Piezometric head at node n  may be defined by energy equation as follow: 
 

 ( ) ( ) 1...,,1
22

2
1

1

2

−=++=++ +
+ NNnh

g
Vhh

g
Vh iLoss

n
nnp

n
n  (14) 

 
Where, h  is the piezometric head; ph  is the pumping head; Lossh  is the total head loss between 
two points including both local and friction losses; and the indexes n  and 1+n  refer to the 
beginning and ending nodes of link i . Since the velocities are rather small in the long 
pipelines, the terms 1, +nn VV  are negligible.  

Determination of the energy loss between two points requires accounting both friction and 
local losses. However, in long pipes, one may reasonably disregard the local ones in energy 
loss calculation. In fact, the energy loss in long pipes is significantly pronounced to friction 
loss rather than local loss. Hence, Lossh  in Eq. 14 is expressed by following Hazen-Williams 
equation for friction loss: 

 

 ( ) NRi
DC

DVLh
iH

ii
iif ...,,11)(7.10 87.4

852.1 =×
×

××=  (15) 

 
In which, hf is the friction loss; L is the pipe length; and CH is the Hazen-Williams 

coefficient. 
This paper considers a water main system with a pre-defined layout as depicted in Figure 

3. The main path consists of 18 nodes and 17 reaches with lengths listed in Table 5. Water 
flow is assumed constantly ( )sm /3.0 3  through whole conveyance path, and the Hazen-
Williams coefficient is equal to CH =120 . The velocity in any reaches, pressure head, and 
pumping head in any nodes may fluctuate in allowable ranges of [ ] sm/6.2,4.0 , [ ]m150,3 , and 
[ ]m80,3 , respectively. According to water discharge and permitted range for water velocity in 
the system, the pipe diameters ought to fall within the range of[ ]m8.0,4.0 . However, regarding 
to available diameters in market, the according continuous range is divided into discrete 
measures with 0.05m intervals.  
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Figure 3. Pipeline layout of the case study 

 
Table 5. Lengths of segments  

9 8 7 6 5 4 3 2 1 Reach 
number 

1200 900 1100 2000 1000 1000 1000 1000 2000 Length (m) 
 17 16 15 14 13 12 11 10 Reach number 
 1000 1000 1000 1000 1500 500 2000 800 Length (m) 

 
Inclusion of 18 nodes and 17 reaches in the system leads the model to an optimization 

problem with 17 discrete decision variables (pipe diameter in each reach) and 18 potential 
continuous decision variables (pumping heads at each node). Each node in the system may 
possibly be assigned a pump station, and if so, the pumping head is accordingly determined. 
Methods A to D employ different approaches for recognition of pump stations at different 
nodes. Method A adds a pumping head of zero to each decision step (node), and if it is chosen 
by an agent, the absence of a pump station at according node is indicated. Method B suggests 
a quite different approach which distinguishes the absence of pump station just after 
determination of the pumping head. If chosen value for pumping head is fallen beneath its 
allowable range, the absence of pump station at according node is discerned. Otherwise, a 
pump station with chosen pumping head is allocated to the node. Methods C and D employ a 
same approach towards the matter. Using Method D, two approaches can be provided for 
making decision on pump stations presence. In first approach, a binary variable can be 
attributed to each node. The value of binary variable shows the presence or absence of a pump 
station at according node. Hence, this approach doubles the number of discrete decision 
variables and may exceed the computational effort in large-scale problems. The second 
approach refers to the main core of method D which employs the Gaussian pdfs from solution 
archive for generating continuous values. This approach introduces and inserts a new solution 
called zero solution to the solution archive in parts due to pumping heads. Choosing zero 
value for the zero solution at any node implies the absence of pump station. If an agent 
chooses a solution other than zero solution, the presence of pump station is indicated and the 
generated value from chosen pdf will represents the pumping head at according node. This 
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approach subtly recognizes the presence of pump stations at the nodes without insertion of any 
extra array of decision variables. Then, this study applies the second approach for method D.  

Once an agent makes a solution, it should be checked whether all constraints including 
those on water velocity in pipes and those on piezometric heads at nodes have been satisfied. If 
not, the associated agent must be penalized. Since the allowable range of pipe diameters are 
determined such that the permitted range of velocity is automatically satisfied, the only remain 
applicable constraints are those on piezometric heads. The following penalty function 
expresses how an agent will be penalized if its decisions lead to violation of permitted range of 
piezometric head at any node: 
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(16) 

 
In which, PF  is the penalty factor indicating the severity of violating the piezometric head 

constraint. Since a minimization problem is conducted, the objective value of a penalized 
agent should be increased as follow:  
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This way, an agent is degraded if it generates a solution in non-feasible space. Hence, after 
a while, the population is spontaneously encouraged to search through feasible domain.  

 
4.3. Results and discussion 

As stated, the problem consists of 35 decision variables from which 17 pipe diameters are 
discrete and remaining 18 variables are in continuous domain (pumping heads). Discrete 
decision space on pipe diameter is defined on the range of [ ]8.0,4.0 meter with 0.05m intervals, 
and the pumping heads have the allowable range between 3 and 80 meters. In following, the 
results of proposed methods will be reported and discussed. To have a comparison of obtained 
results, the problem is also solved by a potent nonlinear solver, Lingo 9.0. To figure out the 
presence of pump stations at the nodes, the mathematical model lends itself to a Mix Integer 
Non-Linear Programming ( )MINLP  problem. It reports two supreme local optimums for the 
problem with different composition of pumping stations and pipe diameters but with the same 
objective value of 122.57 thousands dollar as total annual cost. Both optimum solutions 
locates a pair of pump stations through the pipeline path: one on the nodes number 1, 3 and 
another one on the nodes number 1, 4. The former optimum solution reports the pumping head 
of 68.42m for each station, and the latter reports the values of 77.92m and 58.92m as 
designate pumping heads. These reported optimums follow the same pattern for pipe 
diameters. That is, the only difference in theses optimums is derived from pump stations, in 
both terms of locations and pumping heads.  

Table 5 presents the results obtained by proposed methods after 20 executions. Each 
algorithm conducts the search process through pre-defined number of iterations as listed in 
Table 6. Most crucial specifications of the algorithms are summarized in column 2. Numbers 
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of function evaluations leading to reported values in columns 4-7 are listed in column 3. 
Columns 4 and 6 show the objective values of the best and worst found solution after 20 
independent runs of each algorithm. Values in parenthesis are the number of pump stations 
that according solution assigns to the pipeline. For instance, the best and worst solutions found 
by method A allocate, respectively, two and five pump stations to the system. The mean and 
standard deviation of obtained objective values are reported in columns 5 and 7.  

 
Table 6. Results found by proposed methods 

S.D. Worst Mean Best NFE1 Specifications Method 

4.98 143.32(5) 134.06 127.18(2) 900,000 

No. of colonies:3 
Population size: 150 

Total ants: 450 
No. of iterations: 

2000 

A 

2.97 133.32(3) 125.45 123.26(2) 15,000 
Population size: 30 

No. of iterations: 500 
B 

2.89 130.67(3) 125.39 122.91(2) 15,000 
Population size: 30 

No. of iterations: 500 
C 

0.41 124.38 (2) 123.12 122.71 (2) 6,000 
Population size: 20 

No. of iterations: 300 
D 

1Number of Function Evaluations 
 
Method D located near the optimal solution in remarkably less number of function 

evaluations than other three methods. Its best found solution locates quite close to the 
optimum solutions (Table 7). As seen, the system components including pipe diameters and 
pumping heads due to the best found solution by method D follow almost the same pattern as 
those due to reported local optimums. From Table 6, the mean and standard deviation of 
objective values over 20 runs indicate the robustness of method D in locating near optimum 
solution specifically in comparison with other methods.  

The next superior results are respectively obtained by methods C, B, and A. Methods B 
and C perform quite close to each other which may rise from the same approaches these 
methods use to make decisions on each variable type. Both methods employ the discrete-
based ant models for discrete decision variables; and in continuous space, they utilize the 
continuous-based approaches (Table 1). Method B employs the uni-pdf model while method 
C uses multi-pdf approach. Hence, these algorithms advance towards rather same promising 
areas with almost the same convergence rates. In both methods, a population of 30 ants 
explores the decision space thorough 500 iteration which is equivalent to total 15,000 function 
evaluations (Table 6). In contrast, method A suggests the same approach to tackle any types of 
decision variables. It utilizes the discrete ant models for both types of discrete and continuous 
decision variables. Treating the continuous decision variables as they are in discrete domain 
may cause the weak performance of method A in comparison with other proposed methods. 
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However, results obtained by method A provide decision makers with a variety of solutions 
including 2 to 5 pump stations through the pipeline but with rather different objective values. 
In addition, it required much more number of function evaluations to find the reported results.  

 
Table 7. Comparison between the reported local optimums and the best found solution by  

method D  

Best found solution Reported Local optimums  

Pipe diameter (m) Pipe diameter (m) Pipe no. 
0.8 0.8 1 
0.8 0.8 2 
0.8 0.8 3 
0.75 0.8 4 
0.8 0.8 5 
0.8 0.8 6 
0.45 0.45 7 
0.5 0.45 8 
0.45 0.45 9 
0.45 0.45 10 
0.4 0.4 11 
0.45 0.45 12 
0.4 0.4 13 
0.4 0.45 14 
0.5 0.45 15 
0.4 0.4 16 
0.4 0.4 17 

Node 1: 70.05 
Node 3: 66.98 

Node 1: 68.42 
Node 3: 68.42 

Or 
Node 1: 77.92 
Node 4: 58.92 

Pumping Head 
(m) 

 
Figure 4 compares the ground level with the energy grade line for the best solutions found 

by method D. It assigns two pump stations at node numbers 1 and 3 with respective pumping 
heads of 70.05 and 66.98 meters. As is obvious, the energy grade line is adequately located 
above the ground level through the path and depicted jumps in energy grade line are occurred 
in nodes with pump stations.  
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Figure 4. Energy grade line due to the best found solution by method D 

 
 

5. CONCLUDING REMARKS 
 

Ant colony algorithm was basically introduced to solve the optimization problems with 
discrete decision variables. Efficient performance of ACOs  in discrete domains led to 
different adjustments which enable the ant models to be extended into the continuous-variable 
problems. Despite large number of optimization problems in mixed-variable domains which 
include both discrete and continuous decision variables, lack of ant-based algorithms in this 
area of research is quite sensible. This paper proposed four ant-based approaches to solve the 
mixed variable problems. Each of them is supported by potent ant models in continuous 
and/or discrete domains. To compare the performances of the methods, they were applied first 
to a set of mathematical test functions and then to an engineering design problem. Test 
functions were relatively elaborate in constraints, and the employed engineering problem is 
due to a highly non-linear forced water main design. The water main problem is to find the 
optimum combination of pipe diameters and pumping heads in a pre-defined pipeline path as 
to achieve the minimum annual cost of the system. Pipe diameters form the set of discrete 
variables and pumping heads are regarded as continuous variables. Results demonstrate the 
satisfactory performance of proposed methods on considered mathematical and engineering 
problems; however, further application to mixed-variable domains is highly suggested. These 
methods may be rationally noted as alternative approaches in science and engineering 
optimization studies.  
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APPENDIX 
 

Total cost of the assumed water main includes initial investments and annual operation costs.  
• The initial investments encompass the costs on:  
• purchase and installation of the pumps (Costp)  
• pump station house (Costs)  
• accessory equipments (Costeq)  
• electrical instruments (Costel)  
• purchase and fixing the pipes which is dependent on the pipes’ diameters (Costd)  

The annual operation cost is due to the required electricity for pumping the water (Coste).  
The noted costs, at each node or reach, are expressed as follows: 
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The annual operation cost derived from the required energy for pumping the water may be 

regarded at each pump station as: 

 pue ECCost ×=  (23) 
Where:  

 
T

hQ
E p

wp ×
×

×=
η

γ
1000  (24) 

In which, uC  is the unit cost of electricity; ( )hrKWE p − is the annual electricity 

consumption; ( )3/ mNwγ  is the specific weight of water; ( )smQ /3  is the pumped water flow 
per hour; ( )mhp  is the pumping head; η is the pumping efficiency; and T is the total hours of 
pumping in a year.  

To calculate the total cost of the assumed system, all explained costs at any node or reach 
may be incorporated in a unit expression as:  
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Where, CRF is Capital Recovery Factor and computed as: 
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In which, i  is the inflation rate; and n is the estimated length of operation period.  
Deep attention to above expressions, Eq. 25 may be paraphrased as follow to derive Eq. 

10: 
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