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ABSTRACT

In the present paper, an approach is proposed for structural topology optimization based on
combination of Radial Basis Function (RBF) Level Set Method (LSM) with Isogeometric
Analysis (IGA). The corresponding combined algorithm is detailed. First, in this approach, the
discrete problem is formulated in Isogeometric Analysis framework. The objective function
based on compliance of particular locations of materials in the structure is used and find the
optimal distribution of materia in the domain to minimize the compliance of the system under
a volume constraint. The refinement is employed for construction of the physical mesh to be
consistent with the mesh is used for level set function. Then a parameterized level set method
with radia basis functions (RBFs) is used for structural topology optimization. Finaly, severa
numerical examples are provided to confirm the validity of the method.
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1. INTRODUCTION
An extensive development in structural shape and topology optimization has been experienced
in recent three decades. Considerable researches and various topology optimization methods

such as materia distribution method [1-4], Solid Isotropic Material with Penalization (SIMP)
methods [5-8], Bubble method [9] and Evolutionary Structural Optimization (ESO) method
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[10] have been proposed. In recent years, the level set methods [11, 12] have been
incorporated into structural shape and topology optimization field effectively. The major
strength of level set method is that, it is an implicit method for moving interior and exterior
boundaries and during the process; boundaries may join to each other.

Among the first researchers, Sethian and Wiegmann [13] extended the level set method in
shape optimization. In their work, equivalent stress criteria update level set functions instead
of solving equations. Osher and Santosa [14] also apply the level set method to the topology
design problem of a two-density inhomogeneous drum membrane. In addition Allaire et a
[15] and Wang et d [16] studied the structural topology optimization by combining the shape
derivative [17-19] or sensitivity analysis with the level set model. Recently Wang et a [20]
and Luo et a [21] have proposed Radial Basis Functions as a means to parametrize level set
method. Shojaee and Mohamadian [22-24] have proposed binary and piecewise constant level
set method and combined with a Merriman-Bence-Osher scheme to solve a structural shape
and topology optimization problem.

There are generally two phases in the structural optimization process, the analysis phase
and the boundary evolution phase. The first phase is usualy performed with the finite element
method (FEM). One drawback of FEM is that some approximation is involved in the
geometrical definition of the boundaries of the problem domain. Furthermore, the imposition
of the essential boundary conditions on the boundaries cannot be exactly accomplished. Also
the adaptability and refinement of the solution in the FEM requires several communications
between the discretized geometry and the analysis tool which is quite costly [25, 26].

Isogeometric Analysis (IGA) has been developed with the aim of integrating Non-Uniform
Rational B-Splines (NURBS) based finite element analysis into the CAD. One main idea in
developing isogeometric analysis has been to prevent time-consuming data conversion
between CAD systems and the finite element analysis (FEA) in engineering problems. IGA is
based on Non-Uniform Rational B-Splines (NURBS) basis function applied for both the
solution field approximation and the geometry description. Therefore, CAD and FEA can be
unified efficiently in one package. This leads to the ability of modeling complex geometries
accurately. Moreover, simple and systematic refinement strategies, exact representation of
common engineering shapes, robustness and superior accuracy can be achieved in comparison
with the conventiona finite element method. According to these features, isogeometric
analysis is expected to become a powerful computational approach in the analysis of various
engineering problems; as it has already been applied to structura problems, fluid mechanics,
fluid-structure interaction, structural optimization [27-30]. Isogeometric shape optimization
has been discussed by Cho et a. [31], Wall et a. [32], Nagy et a. [33], Qian [34], Seca et a
[35] and Shojaee et al [36] recently. The validity and efficiency of the approaches have been
verified in agood manner.

The present paper proposes an integrated optimization approach based on the concept of
isogeometric analysis and Radial Basis Function (RBF) level set method. The presented
isogeometric analysis framework employs NURBS in the analysis stage. The optimization
stage performs a RBF’s based level set method to optimize topology. The isogeometric
method is naturally associated with RBF level set method provides a very efficient treatment.
In the following sections, a topology optimization problem is formulated based on the RBF
level set method, and the method of isogeometric analysis is explained. The proposed topology
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optimization method is applied to the minimum mean compliance problem. Finaly, to confirm
the validity and utility of the proposed topology optimization method, severa numerical
examples are provided.

2.LEVEL SET METHOD

The level set method is an implicit method for describing the evolution of an interface between
two domains. It makes use of a functionf , referred to as the level set function, which

represents the boundary as the zero level set and nonzero in the domain [11, 12]. According to
the value of the level set function:

(1) >0 : "x®)] D\W
Fx)=0 : "xmT W @
I (x() <0 : "x®)T WAw

where DI R%is a fixed domain in which al admissible form of W are included (i.e.
WI D). The level set function is used to define the inside and outside regions of interface.
The boundary or interface is embedded as the zero level of the level set function. During the
optimization process, the level set surface may move up and down, and this causes the
embedded boundary to undergo drastic shape or topological changes. From beginning to end,
the value of the level set function on the boundary is constantly kept to be zero

f(x)=00 ,"xI W 2
Differentiating int yields,
1'}1_2 +Rif v(x) =0.0 &)

where n(x):%is the velocity vector field, provided based on sensitivity anaysis.

Considering n = |E: | and v.Nf = (v,)|Nf |, leads equation (3) takes the form,
£+vn|Nf|:0.0 (4)
It

The solving procedure of equation (4) requires appropriate choice of the upwind schemes,
reinitialization algorithm and extension velocity method, which may require excessive amount
of computational efforts and thus limit the utility of the level set methods [11]. Therefore, a
parameterized level set method with radial basis functions (RBFS) is used in the present study
for structural topology optimization.
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3. SHAPE AND TOPOLOGY OPTIMIZATION PROBLEM

3.1. Satement of optimization problem

The optimization goal is to minimize the compliance (global strain energy) over the structural
domain with a constraint on total material volume resource. There exist numerous equivalent
formulations of the minimum compliance problem that we use which was given in the work of
Allaire et a. [15]. Let W be a smooth bounded open set, and is occupied by a linear isotropic
elastic material with Hook’s law A in design domain. A genera objective function
(compliance) can be formulated as,

JW) = Q/ f.udv +QN g.uds= QIAe(u).e(u)dv (5)

where G, is Neumann boundary condition, f,g are body force and surface load respectively,
and u isthe displacement field based on the following linear elasticity equations
i-div(Ae(u))=f in W
{ u=0 on G, 6)
1 (Ae(u)n=g on G,

where G, is Dirichlet boundary condition. The standard notion for minimum compliance
design problems can be mathematically defined as follows

I Minimize J(W) = ¢, f.udv-+ ¢ guds = ) Ae(u) &(u)dv

| (7
*Subjectto: Qldv- V.. £EO

3.2. Shape derivative

In order to apply a gradient method to the minimization of (7), we recal a classical notion of
shape derivative. Murat and Simon [37] introduced a technique for constructing shape
derivative by parameterization of domains. We use their approach as follows:

W, =(A+q)W (8)

Where W is a smooth open set domain, A is identity mapping inAM and
gl W™ (AN, AN) . The shape derivative of objective functionJ (W) : AM ® A is defined as
the Frechet derivativeinw™* (AN AN),

J((A+q)W) = I(W) + I¢W)g +O() 9)
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where J§W) is a continuous linear form on W** (A™ AM) given as the unique solution to
equation. 7. The sensitivity of the mean compliance (equation 7) is given as follows [15, 17],

wa=g MY | g+ fu]- Ae(u).e(u)nds+ & Ae(u) e(uk.nds (10)

T
where H =divn is mean curvature, W is the boundary of material domain. W can be
decomposed as three parts, G,,1D, ,G,. G, is admissible Dirichlet boundary conditions
suchthat G, 1 1D, . G, =1D,, E G,is Neumann boundary conditions where D,, supports
a non-homogeneous one and G, supports homogeneous one. Let us suppose that there is no
body force thenin (5) f =0.0, thus the objective function is defined as:

JW) = QDN g.uds (12)

Therefore, the Frechet derivative of the mean compliance and the volume constraint can be
reformulated as,

IEW)q = () (- Ae(u).e(u))q.nds (12)

VW) = ,009n()ds (13)

In order to solve the optimization problem, we use the augmented L agrangian method. For
agiven penalty parameter (L ) and Lagrange multiplier (1 ©) the augmented problem can be
stated as follows,

6 o
2L K éQIdV_ Vmax 0 (14)

<A = K G .
JW) =J(W) +I éQ,dV VmaXH+

The Lagrange multiplier and penalty parameters are updated as follows at each iteration of
the optimization process,

1 . .
K — K B A - U
| | +—L - éQ/dV Vo o (15)

) LK% =alLX (16)
where a | (0,1) is a constant parameter. Using the shape derivative of equation (14) where
there is no body force, gives,

J¢W)q = Qb vg.nds (17)
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v=8 + Lexav-v i Ae(u).e(u)® (18)
& 2L éQy max [} A

To ensure the decrease of the objective function in level set method, the normal velocity
field must be chosen appropriately. The fast descent or the steepest descent method is used
such as proposed in Allaire et. a. [15] and Wang et. a.[16], whichg = - vn. The normal
velocity field in equation (4) is substituted with normal component of this directiong.n=-v.

TF ~
= VNE|=0 19

3.3. The RBFs based level set method

The use of explicit schemes for solving level set equation requires appropriate choice of the
upwind schemes, reinitialization algorithms and extension velocity methods, which limit the
application of the standard level set method to shape and topology optimization problems. For
the sake of overcoming these drawbacks while retain the topological benefits of the implicit
representation, we apply the Radial Basis Functions (RBFs) to represent the implicit level set
modeling to reconstruct the shape and topology of an admissible design in a parametric way
[16,20]. By using of this scheme, the original Partial Differential Equation (PDE) based level
set method converts into a set of much easier Ordinary Differential Equation (ODE) system
and makes the level set method more efficient to implement.

3.3.1. RBFsimplicit modeling

Radia basis functions are used to approximate an admissible design with a single function
which is globally continuous and differentiable. RBFs are radialy-symmetric functions
centered at particular points which can be expressed as,

I (9=) ([x-x[), xT D (20)

Wherej :R"® R withj (0)2 0 and X is the position of the point or the knot. There are a

large number of different radial basis functions which can be roughly divided into two classes.
One of these is the globally supported radia basis functions (GSRBFs) such as: thin-plate
spline, Sobolev splines, polyharmonic splines, multiquadrics (MQ), inverse multiquadrics
(IMQ) [39] and so on. The other is the compactly supported radial basis functions (CSRBFs)
which is presented by Wendland [40]. In this paper the CSRBF with C2 continuity is chosen
due to its strictly positive definiteness and the sparsity of collection matrices. The CSRBF C2
kernel (Figure 1-a) is defined as,

j 1 (r) =(max(0,1- r))*).(4r +1) (21)

where the radius of support r is given in two dimension Euclidean spaces as
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- %)+ (y- y)?
r= . (22)

where d_, usualy set large enough to guarantee there are enough knots located in the
neighborhood of the current knot [39,40].

..:-.-n-:u u___':,,].uu !
Figure 1. C2-CSRBF and its partial derivativein x direction

The derivatives of these CSRBFs can be easily obtained by the chain rule,

T O4Y) — (max(0,1- 1)) (- 200).
X I

_ (23)
XY — (max(0,1- 1))?.(- 200)
iy 1
where
o xx
X dg /(- %) +(y- )’
(24)
" Y-y
Y dgf(x- X)* +(y- v’
The implicit level set function f (X) can be approximated with radial basis function
& .
f(x=aaj;(x=j (xa (25)
i=1

where a; is the weight, which is usually called expansion coefficient.
3.3.2. RBF-level set optimization method

As aforementioned, we use RBF-level set method to transform the level set PDE equation into
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a system of first-order ordinary differential equation (ODE). In this paper the RBF implicit
modeling is used to approximate f (X) by using CSRBF centered at knots,

f=f(xt)=j "(Xa(t) (26)

With this parameterization the space and time become separate. Since the present RBF
based interpolation scheme is performed under assumption that all the knots are fixed in the
design domain thus, unlike the conventional discrete level set approach in the RBFs based
parametric way, the design variables are the expansion coefficientsa . Using equation (26)
and equation (4) obtain,

jTZ—"’t‘wn

j "a|=0 @7

To determine n unknown coefficient, one can use the collocation method and obtain a
system of ODEs as follow
da

HE+B(a):O (29)

Equation (28) can be solved by severa different ODE solvers such as the first-order
forward Euler’s method and higher-order Runge-Kutta, Rung-Kutta-Fehlberg, Adames-
Bashforth or Adams-Moulton method. In the present study the forward Euler method is used
and an approximate solution to equation (28) can be given by

a(t,,)=a(t,) +DtH "B@f(t,)) (29)

where Dt is the time step. After obtaining the approximate solution in equation (29) at each
time step, the level set function can be updated using equation (25).

4. ISOGEOMETRIC ANALYSIS

The traditiona Finite Element formulations are based on interpolation schemes with Lagrange,
Legendre or Hermite polynomials to approximate geometry, physical field and its derivatives.
This approach often requires a substantial simplification of the geometry, particularly for
curved boundaries of the analysis domain. Generally, adaptive refinement of the discretized
domain is applied to better approximate the boundary and to achieve sufficient convergence.
The concept of isogeometric analysis has been proposed by Hughes and coworkers recently
[25]. The main idea of the isogeometric analysis is to apply the same interpolation scheme that
is used accurately to describe the geometry for the approximation of the physical variables.
Since NURBS basis functions have become standard basis for describing and modeling the
geometry in CAD and computer graphics, they are used for describing both geometry and
solution spaces.
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4.1. B-spline and NURBS basis function

NURBS are a generdization of piecewise polynomial B-splines curves. The B-spline basis
functions are defined in parametric space on a knot vector X . A knot vector in one dimension
is a non-decreasing sequence of real numbers:

X:{xl,xz,...,xn+p+l} (30)

Wherex; isthe i" knot, i is the knot index, i =1,2,...,n+ p+1, p is the order of the B-
spline, and n isthe number of basis functions. The half open interval [xi ,xi+1)is cadled the i
knot span and it can have zero length since knots may be repeated more than one, and the
interval gx,,X,,,..f is called a patch. In the isogeometric analysis, always open knot vectors

are employed. A knot vector is said to be openiif it has p +1repeating knots at the two ends.
With a certain knot span, the B-spline basis functions are defined recursively as,

N, () il if X, EXEX,
(X)) =7
"0 } 0 otherwise (31)
and
X-X Xi+ - X
N = N0 N0 PEL 23 % (3
i+p i i+p+ i+

A B-spline curve of order p isdefined by

n

Cx)=a N, ()R (33)

where N, (X) isthe i" B-spline basis function of order p and P are control points, givenin

d-dimensional space °. 1-D B-splines basis functions, that are built from open knot vectors,
are interpolatory at the ends of parametric space. Figure 2 shows the quadratic B-spline basis
functions. In two dimensions, B-spline basis functions are interpolatory at the corners of the
patches. The non-uniform rational B-spline (NURBS) curve of order pis defined as,

C(x)=a R ,x)R (34
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Figure 2. Quadratic basis functions for an open knot vector

X ={0,0,0,0.2,0.4,0.6,0.8, 1,11
R,p(x)z nNi,p(X)\Ni
a N, , 00w (35)

i=1

Here R jis the NURBS basis functions, P is the control point and w is the i" weight

that must be non-negative. In the two dimensional parametric space[ 0, 1]2, NURBS surfaces

are constructed by tensor product through knot vectors X:{xl,xz,...,xn+p+l} and

Y ={Y 1Y 20y g} - It vigldS O,

n
[o]

Qo 5

Sxy)=a

i=1 j=1

R™(x.y )P (36)

where R, isthe (i, j)-th of n” mcontrol points, also called the control mesh. The interval

g

84 Xnspe X8 1Y meqs HiS @ patch and [%.X.) &,y J.+1) isaknot span. R”f(x,h)isthe
NURBS basis function in two dimensional space,

N, COM 4 W,
W,y ) @

RM(xy )=

and

W xy)=aaN M, o )w,
i=1 j=1 (39)

The derivative of R%%(x,h) and W ,(x,y )with respect to X is derived by simply
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applying the quotient rule to (37) and (38),

W, (xy)
TR (x.y ) _ NG OCOM ;& Jw W (xy ) - TNi,p(X)Mj,q(y W | (39)
x W, (xy )
and
W\/I:H(;y - a8 NEOIM W (40)

The domain of problem is divided into patches and each patch is divided into knot spans or
elements. Patches play the role of sub-domains within which element types and materia
models are assumed to be uniform [25]. Nevertheless, many complicated domains can be
represented by a single patch.

4.2. NURBS based isogeometric analysis formulation

Considering a 2-D linear elasticity problem with the presence of body force b and traction

forcet . Implementing the virtual displacement method, the following weak form equation is
obtained,

\ T \ T hY T35 —_
Qlds od W- Q,du bdW- Qdu tdG=0 (1)

where ¢ isthe stress tensor and € is the strain tensor. In isogeometric gpproach, the discretization
is based on NURBS. Hence, the geometry and solution field are approximated as,

x(x,h) =RP X T W, (42)
u"(x,h) =Rd X T W, (43)

where W__ . ={(x,h)|xT 8 X pua N T gwl,hwqﬂg} . The matrix-form of R; ;and P, ; can

pi
be changed into vector-form by mapping from i, j subscriptsto k by:

k=i+(j-Dn, with k =1,2,...,n.m (44)
So, the control points are defined as,
P= (Pl,lx’Pl,ly’ Pz,lxi Pz,ly’---’Pn,my)T (45)

The values of solution field at the control points, aso called control variables, in the present
IGA formulation are displacements and can be arranged similar to the control points in a
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vector-form,
d= (dl,lx’dl,ly’dz,lx’dz,ly"“ d y)T (46)

' Mn,m

The matrix R is obtained from NURBS basis functions,

0 R, 0 . R, 0
R, O R, .. O Roni (47)

)
1

: (D> D~

i

Next, the stiffness matrix for a single patch is computed as,

K paer = t@)B" (<,h)DB(x,0)|3[dW (48)

where t is the thickness, W is the parametric space, B(Xx,h) is the strain-displacement
matrix, and Jis the jacobian matrix which maps the parametric space to the physical space.
D isthe elastic materia property matrix for plane stress. The force vector on asingle patchin
the presence of body forces b and traction forces t is obtained as,

f = @R b|d W+ QRTT|3,[|d 6 (49)

where & is the traction boundary in the parametric space, R, isthe NURBS basis function

evaluated on the traction boundary and J, is the Jacobian that maps the traction boundary into

a part of physical space boundary. The control variables can then be solved by the following
discretized equilibrium equation,

Kd=f (50)

The solution field at each point of the physical space can be approximated by equation
(50). For numerical integration, the standard Gauss-quadrature is used over each element
(knot span). The number of quadrature points depends on the NURBS order. The details of
spaces, mapping and integration in isogeometric analysis are shown in Figure 3. Note that the
physical mesh is only an image of knot spans on the physical space.

4.3. H-refinement or knot insertion

There are three types of refinement in isogeometric analysis: h-refinement or knot insertion, p-
refinement or order elevation and k-refinement [25]. In this paper, we employed only the h-
refinement.

Knot insertion is a procedure that arbitrary new knots are added to a knot vector without
any change in the shape of the B-spline curve. If there are m=n+p+1 knots in the knot vector
of the B-spline curve, where n is the number of control points and p is the order of B-spline
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curve, by adding a new knot, a new control point must be added. Also, some current control
points must be redefined. Consider a knot vector X:{xl,xz,...,xm:n+p+l} withncontrol

pointsP,, P, ,...,P, and the order of p. Let x T [X,,X,.,] be a desired new knot. The knot
insertion procedure has the following 3 steps [31],
1. Findk suchthatx belongsto [X,,X,.]-

2. Find p+1control pointsP, ,, P\ .1, Py
3. Compute p new control pointsQ; from the above p +1control points using equation (27).
Q=(-a)R,+aR (51)
where a; is obtained from, i
a =25 for k- p+1£i £k
Xivp =% (52)

54 Crontrol Blesh

-

Physical hdesh—

i

=1
o . & -1 1
1 Parent element

Parametric space

Figure 3. Physical space Wis mapped into the parametric space W using NURBS basis
functions. For numerical integration in the parametric space, each knot span is mapped to the
parent dement, where the integration is performed on

By performing the above procedure, the new knot vector and control points are obtained as,



60 S. Shojaee, M. Mohamadian and N. Valizadeh

{xl,xz,...,xk,x ,xk+l,...,xm}

(53
{PPys P i Q pots Qo przrenQr P Pesgroes P

Now, this knot insertion algorithm is extended to a NURBS curve. For this purpose, a
given NURBS curve in d-dimensional space is converted into a B-spline curve in (d+1)-
dimensional space, then by applying the knot insertion algorithm in this B-spline curve, the
new control points are obtained. These new control points should then be projected to d-
dimensional space to obtain the new control points of the NURBS curve. Consider control

pointsP = (%, y;) with the weightsw, . By converting these control points to 3-dimensional
space, P" = (w,x,w y,,W,) , the new control points are then computed from equation (27),

Q"=(-a)R+a,R" (54)

The location of control pointsin 2D are obtained by the following projection technique:

_(1-a)R%+aR"
Q- ai)Wi-1+aiWi (55)

Q

and the weights are:
Wo = (1-a))w_, +a,w (56)

5. ISOGEOMETRIC ANALYSISWITH LEVEL SET METHOD FOR
STRUCTURAL TOPOLOGY OPTIMIZATION

In proposed approach, the discrete problem is formulated in isogeometric analysis framework.
The general optimization problem stated in (5) is specified for an isogeometric discretization.
We apply objective functions based on compliance of particular locations of the structure.

In geometry construction, we construct the geometry by performing knot insertion
algorithm on the initial geometry model is shown in Figure 4. The initial geometry is modeled
as aNURBS surface of bi-quadratic order with 6x4 control points. The open knot vectorsin x
direction is {0,0,0,0.25,0.5,0.75,1,1,1} and iny direction is {0,0,0,0.5,1,1,1}, which yields
4x2 knot spans. By dividing each knot span in x and y direction into 10 equal parts, the
physical mesh with 40x20 equal knot spans and the control mesh with 42x22 control points is
obtained that is shown in figure 5. Note that the location of the control points in the initia
geometry model plays an important role in reaching the desired analysis model. We used the
local support property of NURBS basis function, i.e., there are only (p+1)” (q+1) number of
nonzero basis functions within each knot span, where p and q are the orders of NURBS. We
know that each NURBS basis function has a corresponding control point. So, we can assign to
each knot span, (p+1)" (q+21) control points. In this work, p=q=2 and we have 3x3

control points for each knot span, as shown in Figure 5.
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(@ (b)
Figure 4. Initial geometry modd. (a) Control mesh. (b) Physical mesh

@ ® |

BRERBERBREBEBERES

(©) (d)

Figure 5. Geometry representation for the analysis modd. (a) Physical mesh that is an image of
40x20 knot spans. (b) Control mesh that is consisting of 42x22 control points. (c) Local view of
the left top corner of physical mesh, shows eements a, b and c. (d) Control points have supported
oneementsa, bandc

6. NUMERICAL IMPLEMENTATION

The objective of this section is to describe the numerical implementation of the proposed
method. These implementations are developed to improve the performance of the proposed
method.

6.1. Filtering

As mentioned before, shape derivative causes the level set function to have non- uniform value
a points in design domain and can lead to numerical errors. To avoid quick changes and
suppress the non smooth variation a filtering technique originally developed in image
processing is used. One of the filtering approaches may be employed in structural topology
optimization problems is convolution technique. In convolution based methods the density of
each pixel is changed according to information from its neighborhood. The convolution
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process can be formulated as,

c(i,i)=a & h(k,NAG{ +m- k,j+m-1) (57)

k=1 1=1

where h(K, 1)is the density of the pixel located in thek™ row and 1™ column of the image and
c is the filtered density of the pixel. The so called impulse response matrix A(i, j) isan’ n
square matrix that has to be chosen according to the purpose of the filter. The
varigdblem =(n+1)/ 2, where n is the number of pixel in each side of the filter window. It
should be noted that by implementing this method, the original optimization problem is

changed and as result of seeking clear images, suboptimal results for the value of the objective
function are obtained.

6.2. Ersatz material approach

A challenge to structura topology optimization is the fact that the isogeometric mesh will
become distorted after the shape and topology change. Under these circumstances, the
structure domain must be remeshed. However, remeshing is a complicating and time
consuming task, and will bring down the efficiency of optimization. Instead, in this paper, the
so-called “ersatz materia” approach [15] which has been widely used in sensitivity analysis of
the compliance optimization problem. In this approach the void domain is assumed to be
replaced by a type of “weak” material, whose Y oung’s modulus is very low. More precisely,
we define a 'Y oung’s modulus E as,

E,=cE (58)

Where E isthe Y oung’s modulus of the solid material of the structure and c is a coefficient.

The amount of this coefficient is sdected as ¢ = 1 for solid materid and ¢ = 0.0001 for void
domain. Note that ¢ cannot be too smdll, otherwise the stiffness matrix will be singular. M oreover,
for the dements intersected by the boundary, Young’s modulus is caculated according to the
fraction of solid materid. For example, in one dement, if the volume of solid takes one hdf of the
volume of the element, then the Y oung’s modulus of this elementisset toE , = 0.5E .

7.NUMERICAL EXAMPLES

In this section, two widely studied examples in structural topology optimization are used to
illustrate the potentials of the proposed method. The optimization problem is considered as the
compliance minimization subjected to volume constraint. The units of all the parameters can
be defined flexibly, but they should remain unchanged during all different stages. All
numerical examples have the following data, Y oung’s modulus of real material is assumed 1,
ersatz material 10 Poisson’ ratio for two material is assumed 0.3 and the order of NURBS
basis functions in each direction is 2. In this method, the level set function is initially
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embedded as a signed distance function, but no further reinitialization is applied in the rest of
iterations. Also, the present algorithm is terminated when the relative difference between four
successive objective function values is less than 10" or when the given maximum number of
iterations has been reached.

7.1. Cantilever beam

Figure 6 shows the design domain of a cantilever beam with asize of L =1. The boundary of
the left side is fixed, and a vertical concentrated force F=1N is applied at the center point of
the right side boundary. The specified material volume fraction is50%. In this example, we
use Wendland C2-CSRBF and the knot points are distributed uniformly in the design domain.

2L

ign Domain =
Y

Figure 6. A cantilever beam

For comparison purpose, first, we apply finite element method as an analyzer when the
level set mesh coincides with the finite element mesh. The design domain is discretized with
80" 40finite elements and the initial design is completely solid. It’s clearly observed that the
results of IGA by 800 elements agree well with FEA by 3200 elements. This IGA feature
simplifies using of relatively coarse meshes in the topology optimization procedure.

Other parameters that are used for solving this example are ds=5,1 =0, L =20, a = 0.95.
Figure 7 displays the evolution process of the cantilever beam at different stages. These
figures show that the proposed level set method can handle shape fidelity and topological
changes simultaneously by retaining a smooth boundary. In this method the initial level set
surface is embedded as a signed distance function and we do not apply reinitialization at the
rest of the topology optimization procedure. Also, because the Hamilton-Jacobi partial
differential equation is converted to an ordinary differential equation, we do not need to meet
the CFL condition for time step, thus we choset =10as a time step. These circumstances
caused the nucleation of holes in design domain during the optimization process.

(@) Initial design (b) Step 10 (c) Step 15
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22 220 220

(d) Step 20 (€) Step 25 (f) Final design
Figure 7. The evolution of optimal topology of the cantilever beam using FEA

Also, Figure 8 shows the strain energy and the volume fraction in different iterations.

1

compliance

e e——te———e——0 010 2090 4t & &
ireration iteration

Figure 8. The History of objective function and volume

In second step, we optimized this example when the isogeometric analysis is applied. Here,
the isogeometric mesh does not correspond with the level set mesh. More precioudly, the
design domain is divided with40” 80 level set mesh and 20" 40 isogeometric mesh. The
accuracy of the analysis when we apply isogeometric method with coarse mesh is partialy the
same as we use the finite element mesh with fine size. Figure 9 illustrate the designs in
different stages of the optimization process, when we use the isogeometric method for
analyzing. As shown in this figure, one can find that the two different schemes can lead to the
similar designs. But, because in later scheme we use a coarse mesh for dividing the design
domain, the total time of the optimization process when we apply the isogeometric method is
much better than we use finite element method as an analyzer. The results obtained with the
two different schemes are listed in Table 1. Figure 10 shows that the convergent curves of the
objective function and the volume ratio.

o 2

(@) Initial design (b) Step 10 (c) Step 15
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> 220 220

(d) Step 20 (e) Step 30 (f) Final design
Figure 9. The evolution of optimal topology of the cantilever beam using IGA
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Figure 10. The History of objective function and volume ratio

Table 1. Comparison of the FEA and IGA

Analyzer J(Q) (objective) T(s) (total time) N (iterations)
FEA 62.66 863.72 60
IGA 62.54 541.14 57
(a) With 12 holes

i e

(b) With 33 holes
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(c) With 44 holes
Figure 11. The effect of theinitial design of the cantilever beam

We also investigate the influence of different number of initial holes on the final design.
Figure 11 a, b and ¢ show that the identical optimal structures are obtained regardiess of
number of initial holes in the design domain and the complexity of the final topologies do not
change obviously with the different number of initial holes. In table 2 the results of these
different initial designs are listed.

Table 2. Results of different designs of the cantilever beam

Initial design (ob\j]gﬁve) T(s) (total time) N (iterations)
Figure 13.awith 12 holes 63.06 531.02 53
Figure 13.b with 33 holes 62.83 536.55 55
Figure 13.c with 44 holes 62.88 537.63 55

7.2. AMBB beam

The design domain of aMBB beam is shown in Figure 12. A load F=300 is gpplied at the center of
the top edge. Its Ieft corner at the bottom is fixed and the right corner is supported as aroller. We
aso consider L=1 and the design domain is discretized with 120" 30elements. For this example,
The IGA mesh is corresponding with level set mesh. The volume fraction is 40% and the other
parameters, using for solving this problem, are ds=5,I =0,L =30, a =0.9. InFigure 13, the
evolution of optimal topology is displayed by use of the present method.

E
. 2L I 2L

- Design Domain

Figure 12. A MBB beam
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(@) Initial design (b) Step 5

ATAY 5 WA/AV AN

(c) Step 15 (d) Step 20

JAVAVAYAVAVAN

(e) Step 25 (f) Final design
Figure 13. The evolution of optimal topology of the MBB beam

8. CONCLUSION

In the present study, the composition of RBF level set method with isogeometric analysis has been
successfully applied to the structura shape and topology optimization. In this method, the discrete
problem is formulated in isogeometric andysis framework. A parameterized level set method with
RBFs is used for structura topology optimization. The proposed isogeometric based topology
optimization method has severd advantages compared to the finite eement based method. Unlike
the standard FEM-based design optimization, the computationa time can be reduced by using this
andyzer, while obtaining the same optimd topology. Due to the desirable characteristics of
NURBS in IGA, it does not have any destructive effect on the quality of discretization.
Furthermore, the proposed method in this paper has its strength on the capacity of deding with the
design dependent load problem or stress optimization problem.
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