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ABSTRACT 
 

In the present paper, an approach is proposed for structural topology optimization based on 
combination of Radial Basis Function (RBF) Level Set Method (LSM) with Isogeometric 
Analysis (IGA). The corresponding combined algorithm is detailed. First, in this approach, the 
discrete problem is formulated in Isogeometric Analysis framework. The objective function 
based on compliance of particular locations of materials in the structure is used and find the 
optimal distribution of material in the domain to minimize the compliance of the system under 
a volume constraint. The refinement is employed for construction of the physical mesh to be 
consistent with the mesh is used for level set function. Then a parameterized level set method 
with radial basis functions (RBFs) is used for structural topology optimization. Finally, several 
numerical examples are provided to confirm the validity of the method. 
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1. INTRODUCTION 
 

An extensive development in structural shape and topology optimization has been experienced 
in recent three decades. Considerable researches and various topology optimization methods 
such as material distribution method [1-4], Solid Isotropic Material with Penalization (SIMP) 
methods [5-8], Bubble method [9] and Evolutionary Structural Optimization (ESO) method 
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[10] have been proposed. In recent years, the level set methods [11, 12] have been 
incorporated into structural shape and topology optimization field effectively. The major 
strength of level set method is that, it is an implicit method for moving interior and exterior 
boundaries and during the process; boundaries may join to each other.   

Among the first researchers, Sethian and Wiegmann [13] extended the level set method in 
shape optimization.  In their work, equivalent stress criteria update level set functions instead 
of solving equations. Osher and Santosa [14] also apply the level set method to the topology 
design problem of a two-density inhomogeneous drum membrane. In addition Allaire et al 
[15] and Wang et al [16] studied the structural topology optimization by combining the shape 
derivative [17-19] or sensitivity analysis with the level set model. Recently Wang et al [20] 
and Luo et al [21] have proposed Radial Basis Functions as a means to parametrize level set 
method. Shojaee and Mohamadian [22-24] have proposed binary and piecewise constant level 
set method and combined with a Merriman-Bence-Osher scheme to solve a structural shape 
and topology optimization problem.  

There are generally two phases in the structural optimization process, the analysis phase 
and the boundary evolution phase. The first phase is usually performed with the finite element 
method (FEM). One drawback of FEM is that some approximation is involved in the 
geometrical definition of the boundaries of the problem domain. Furthermore, the imposition 
of the essential boundary conditions on the boundaries cannot be exactly accomplished. Also 
the adaptability and refinement of the solution in the FEM requires several communications 
between the discretized geometry and the analysis tool which is quite costly [25, 26]. 

Isogeometric Analysis (IGA) has been developed with the aim of integrating Non-Uniform 
Rational B-Splines (NURBS) based finite element analysis into the CAD. One main idea in 
developing isogeometric analysis has been to prevent time-consuming data conversion 
between CAD systems and the finite element analysis (FEA) in engineering problems. IGA is 
based on Non-Uniform Rational B-Splines (NURBS) basis function applied for both the 
solution field approximation and the geometry description. Therefore, CAD and FEA can be 
unified efficiently in one package. This leads to the ability of modeling complex geometries 
accurately. Moreover, simple and systematic refinement strategies, exact representation of 
common engineering shapes, robustness and superior accuracy can be achieved in comparison 
with the conventional finite element method. According to these features, isogeometric 
analysis is expected to become a powerful computational approach in the analysis of various 
engineering problems; as it has already been applied to structural problems, fluid mechanics, 
fluid-structure interaction, structural optimization [27-30]. Isogeometric shape optimization 
has been discussed by Cho et al. [31], Wall et al. [32], Nagy et al. [33], Qian [34], Seoa et al 
[35] and Shojaee et al [36] recently. The validity and efficiency of the approaches have been 
verified in a good manner. 

The present paper proposes an integrated optimization approach based on the concept of 
isogeometric analysis and Radial Basis Function (RBF) level set method. The presented 
isogeometric analysis framework employs NURBS in the analysis stage. The optimization 
stage performs a RBF’s based level set method to optimize topology. The isogeometric 
method is naturally associated with RBF level set method provides a very efficient treatment.  
In the following sections, a topology optimization problem is formulated based on the RBF 
level set method, and the method of isogeometric analysis is explained. The proposed topology 
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optimization method is applied to the minimum mean compliance problem. Finally, to confirm 
the validity and utility of the proposed topology optimization method, several numerical 
examples are provided. 

 
 

2. LEVEL SET METHOD 
 

The level set method is an implicit method for describing the evolution of an interface between 
two domains. It makes use of a functionφ , referred to as the level set function, which 
represents the boundary as the zero level set and nonzero in the domain [11, 12]. According to 
the value of the level set function:  
 

 
( ( )) 0 : ( ) \
( ( )) 0 : ( )
( ( )) 0 : ( ) \

x t x t D
x t x t
x t x t

φ
φ
φ

> ∀ ∈ Ω
 = ∀ ∈ ∂Ω
 < ∀ ∈Ω ∂Ω

 (1) 

 
where dD R⊂ is a fixed domain in which all admissible form of Ω  are included (i.e. 

DΩ ⊂ ). The level set function is used to define the inside and outside regions of interface. 
The boundary or interface is embedded as the zero level of the level set function. During the 
optimization process, the level set surface may move up and down, and this causes the 
embedded boundary to undergo drastic shape or topological changes. From beginning to end, 
the value of the level set function on the boundary is constantly kept to be zero 

 
 ( ) 0.0 ,= ∀ ∈∂Ωφ x x  (2) 

 
Differentiating in t yields,   

 . ( ) 0.0v x
t
φ

φ
∂

+ ∇ =
∂

 (3) 

 

where dx(x)=
dt

ν is the velocity vector field, provided based on sensitivity analysis.  

Considering ∇
=

∇
φ
φ

n  and . ( )∇ = ∇φ φnv v , leads equation (3) takes the form,  

 0.0∂
+ ∇ =

∂
φ

φnv
t

 (4) 

 
The solving procedure of equation (4) requires appropriate choice of the upwind schemes, 

reinitialization algorithm and extension velocity method, which may require excessive amount 
of computational efforts and thus limit the utility of the level set methods [11]. Therefore, a 
parameterized level set method with radial basis functions (RBFs) is used in the present study 
for structural topology optimization.         
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3. SHAPE AND TOPOLOGY OPTIMIZATION PROBLEM 
 

3.1. Statement of optimization problem 

The optimization goal is to minimize the compliance (global strain energy) over the structural 
domain with a constraint on total material volume resource. There exist numerous equivalent 
formulations of the minimum compliance problem that we use which was given in the work of 
Allaire et al. [15]. Let Ω  be a smooth bounded open set, and is occupied by a linear isotropic 
elastic material with Hook’s law A in design domain. A general objective function 
(compliance) can be formulated as,  
 
 ( ) . . ( ). ( )

Ω Γ Ω
Ω = + =∫ ∫ ∫

N

J f udv g uds Ae u e u dv  (5) 

 
where NΓ is Neumann boundary condition, ,f g  are body force and surface load respectively, 
and u  is the displacement field based on the following linear elasticity equations 

 
( ( ))

0
( ( ))

− = Ω
 = Γ
 = Γ

D

N

div Ae u f in
u on

Ae u n g on
 (6) 

 
where DΓ  is Dirichlet boundary condition. The standard notion for minimum compliance 
design problems can be mathematically defined as follows 
 

 
max

( ) . . ( ). ( )

: 0

Ω Γ Ω

Ω

 Ω = + =


− ≤

∫ ∫ ∫
∫

N

Minimize J f udv g uds Ae u e u dv

Subject to dv V
 (7) 

 
3.2. Shape derivative 

In order to apply a gradient method to the minimization of (7), we recall a classical notion of 
shape derivative. Murat and Simon [37] introduced a technique for constructing shape 
derivative by parameterization of domains. We use their approach as follows:  
 
 ( )Ω = ℑ + Ωθ θ  (8) 
 
Where Ω  is a smooth open set domain, ℑ  is identity mapping in Nℜ  and 

1, ( , )N NWθ ∞∈ ℜ ℜ . The shape derivative of objective function ℜ→ℜΩ NJ :)(  is defined as 
the Frechet derivative in 1, ( , )N NW ∞ ℜ ℜ , 
 (( ) ) ( ) ( ) ( )′ℑ + Ω = Ω + Ω +θ θ θJ J J O  (9) 
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where ( )J ′ Ω  is a continuous linear form on 1, ( , )N NW ∞ ℜ ℜ  given as the unique solution to 
equation. 7. The sensitivity of the mean compliance (equation 7) is given as follows [15, 17],  
 

 

( . )( ) (2[ . . ] ( ). ( )) . ( ). ( ) .
Γ Γ

∂′ Ω = + + − +
∂∫ ∫θ θ θ

N D

g uJ Hg u f u Ae u e u nds Ae u e u nds
n  

(10) 

 
where H divn=  is mean curvature, ∂Ω  is the boundary of material domain. Ω  can be 
decomposed as three parts, Γ ∂ Γ, , .D N OD  DΓ  is admissible Dirichlet boundary conditions 
such that Γ ⊂ ∂ Γ = ∂ ∪ Γ. D D N N OD D is Neumann boundary conditions where ND∂  supports 
a non-homogeneous one and OΓ  supports homogeneous one. Let us suppose that there is no 
body force then in (5) 0.0f = , thus the objective function is defined as:  

 
 ( ) .

∂
Ω = ∫

ND
J g uds  (11) 

 
Therefore, the Frechet derivative of the mean compliance and the volume constraint can be 

reformulated as,  
 ( ) ( ( ). ( )) .

Γ
′ Ω = −∫θ θ

O

J Ae u e u nds  (12) 

 
 ( ) ( ) ( )

∂Ω
′ Ω = ∫θ θV x n x ds  (13) 

 
In order to solve the optimization problem, we use the augmented Lagrangian method. For 

a given penalty parameter ( KΛ ) and Lagrange multiplier ( λ K ) the augmented problem can be 
stated as follows,  

 

 
2

max max
1( ) ( )

2Ω Ω
   Ω = Ω + − + −   Λ∫ ∫λ K

KJ J dv V dv V  (14) 

 
The Lagrange multiplier and penalty parameters are updated as follows at each iteration of 

the optimization process,  
 

 1
max

1+

Ω
 = + − Λ ∫λ λK K

K dv V  (15) 

 
 1+Λ = ΛαK K  (16) 
where 0 1( , )α ∈  is a constant parameter. Using the shape derivative of equation (14) where 
there is no body force, gives,  
 ( ) .

Γ
′ Ω = ∫θ θ

O

J v nds  (17) 
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2

max
1 ( ). ( )

2 Ω

  = + − −  Λ ∫λv dv V Ae u e u  (18) 

 
To ensure the decrease of the objective function in level set method, the normal velocity 

field must be chosen appropriately. The fast descent or the steepest descent method is used 
such as proposed in Allaire et. al. [15] and Wang et. al.[16], which vnθ = − . The normal 
velocity field in equation (4) is substituted with normal component of this direction vn −=.θ . 

 0∂Φ
− ∇Φ =

∂
v

t
 (19) 

 
3.3. The RBFs based level set method 

The use of explicit schemes for solving level set equation requires appropriate choice of the 
upwind schemes, reinitialization algorithms and extension velocity methods, which limit the 
application of the standard level set method to shape and topology optimization problems. For 
the sake of overcoming these drawbacks while retain the topological benefits of the implicit 
representation, we apply the Radial Basis Functions (RBFs) to represent the implicit level set 
modeling to reconstruct the shape and topology of an admissible design in a parametric way 
[16,20]. By using of this scheme, the original Partial Differential Equation (PDE) based level 
set method converts into a set of much easier Ordinary Differential Equation (ODE) system 
and makes the level set method more efficient to implement. 

 
3.3.1. RBFs implicit modeling 

Radial basis functions are used to approximate an admissible design with a single function 
which is globally continuous and differentiable. RBFs are radially-symmetric functions 
centered at particular points which can be expressed as, 

 
 ( ) ( ),i ix x x x Dϕ ϕ= − ∈  (20) 

                                      
Where : R Rϕ + →  with (0) 0ϕ ≥  and ix is the position of the point or the knot. There are a 
large number of different radial basis functions which can be roughly divided into two classes. 
One of these is the globally supported radial basis functions (GSRBFs) such as: thin-plate 
spline, Sobolev splines, polyharmonic splines, multiquadrics (MQ), inverse multiquadrics 
(IMQ) [39] and so on. The other is the compactly supported radial basis functions (CSRBFs) 
which is presented by Wendland [40]. In this paper the CSRBF with C2 continuity is chosen 
due to its strictly positive definiteness and the sparsity of collection matrices. The CSRBF C2 
kernel (Figure 1-a) is defined as, 

 

 ( )4( ) max(0, (1 )) .(4 1)i r r rϕ = − +  (21) 

  
where the radius of support r is given in two dimension Euclidean spaces as   
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2 2( ) ( )− + −

= i i

sp

x x y y
r

d  (22) 

 
where spd  usually set large enough to guarantee there are enough knots located in the 
neighborhood of the current knot [39,40].  

 

 
Figure 1. C2-CSRBF and its partial derivative in x direction 

 
The derivatives of these CSRBFs can be easily obtained by the chain rule, 
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x x

ϕ∂ ∂
= − −
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where 
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The implicit level set function ( )φ x can be approximated with radial basis function 
 

 
1

( ) ( ) ( )
N

T
i i

i

x x xφ α ϕ ϕ α
=

= =∑  (25) 

where α i is the weight, which is usually called expansion coefficient. 
3.3.2. RBF-level set optimization method 

As aforementioned, we use RBF-level set method to transform the level set PDE equation into 
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a system of first-order ordinary differential equation (ODE). In this paper the RBF implicit 
modeling is used to approximate ( )xφ  by using CSRBF centered at knots, 

 
 ( , ) ( ) ( )Tx t x tφ φ ϕ α= =  (26) 

   
With this parameterization the space and time become separate. Since the present RBF 

based interpolation scheme is performed under assumption that all the knots are fixed in the 
design domain thus, unlike the conventional discrete level set approach in the RBFs based 
parametric way, the design variables are the expansion coefficientsα . Using equation (26) 
and equation (4) obtain,  
 0T T

n
d V
dt
α

ϕ ϕ α+ ∇ =  (27) 

 
To determine n unknown coefficient, one can use the collocation method and obtain a 

system of ODEs as follow 

                                                      ( ) 0α
α+ =

dH B
dt                                               (28) 

 
Equation (28) can be solved by several different ODE solvers such as the first-order 

forward Euler’s method and higher-order Runge-Kutta, Rung-Kutta-Fehlberg, Adames-
Bashforth or Adams-Moulton method. In the present study the forward Euler method is used 
and an approximate solution to equation (28) can be given by 

 
                                    1

1( ) ( ) ( ( ))α α α−
+ = + ∆n n nt t tH B t  (29) 

 
where t∆  is the time step. After obtaining the approximate solution in equation (29) at each 
time step, the level set function can be updated using equation (25).  

 
   

4. ISOGEOMETRIC ANALYSIS 
 

The traditional Finite Element formulations are based on interpolation schemes with Lagrange, 
Legendre or Hermite polynomials to approximate geometry, physical field and its derivatives. 
This approach often requires a substantial simplification of the geometry, particularly for 
curved boundaries of the analysis domain. Generally, adaptive refinement of the discretized 
domain is applied to better approximate the boundary and to achieve sufficient convergence. 
The concept of isogeometric analysis has been proposed by Hughes and coworkers recently 
[25]. The main idea of the isogeometric analysis is to apply the same interpolation scheme that 
is used accurately to describe the geometry for the approximation of the physical variables. 
Since NURBS basis functions have become standard basis for describing and modeling the 
geometry in CAD and computer graphics, they are used for describing both geometry and 
solution spaces.  
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4.1. B-spline and NURBS basis function 

NURBS are a generalization of piecewise polynomial B-splines curves. The B-spline basis 
functions are defined in parametric space on a knot vector Ξ . A knot vector in one dimension 
is a non-decreasing sequence of real numbers: 

 
 { }1 2 1ξ ξ ξ + +Ξ = , , ..., n p  (30) 

 
Where iξ  is the thi  knot, i  is the knot index, 1, 2,..., 1i n p= + + , p  is the order of the B-

spline, and n  is the number of basis functions. The half open interval [ )1,i iξ ξ + is called the thi  
knot span and it can have zero length since knots may be repeated more than one, and the 
interval 1 1,ξ ξ + +  n p  is called a patch. In the isogeometric analysis, always open knot vectors 
are employed. A knot vector is said to be open if it has 1p + repeating knots at the two ends.  

With a certain knot span, the B-spline basis functions are defined recursively as, 
 

 
1

,0

1
( )

0
i i

i

if
N

otherwise
ξ ξ ξ

ξ +≤ ≤
= 


 (31) 

and 

 
1

, , 1 1, 1
1 1

( ) ( ) ( ), p 1,  2,  3,   . i pi
i p i p i p

i p i i p i

N N N
ξ ξξ ξ

ξ ξ ξ
ξ ξ ξ ξ

+ +
− + −

+ + + +

−−
= + = …

− −  (32) 

 
A B-spline curve of order p  is defined by 

 ,
1

( ) ( ) .
n

i p i
i

C N Pξ ξ
=

= ∑  (33) 

 
where , ( )ξi pN  is the thi  B-spline basis function of order p  and P  are control points, given in 
d-dimensional space d . 1-D B-splines basis functions, that are built from open knot vectors, 
are interpolatory at the ends of parametric space. Figure 2 shows the quadratic B-spline basis 
functions. In two dimensions, B-spline basis functions are interpolatory at the corners of the 
patches. The non-uniform rational B-spline (NURBS) curve of order p is defined as, 
 

 ,
1

( ) ( )
n

i p i
i

C R Pξ ξ
=

= ∑  (34) 
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 Figure 2. Quadratic basis functions for an open knot vector  

 
{ }0,0,0,0.2,0.4,0.6,0.8,1,1,1Ξ =  

 

 

,
,

,
1

( )
( )

( )

i p i
i p n

i p i
i

N w
R

N w

ξ
ξ

ξ
=

=

∑  (35) 

 
Here ,i pR is the NURBS basis functions, iP  is the control point and iw  is the thi  weight 

that must be non-negative. In the two dimensional parametric space[ ]20,1 , NURBS surfaces 

are constructed by tensor product through knot vectors { }1 2 1, , ..., n pξ ξ ξ + +Ξ =  and 

{ }1 2 1, ,...,ψ ψ ψ + +Ψ = m q . It yields to, 

 ,
, ,

1 1
( , ) ( , )

n m
p q

i j i j
i j

S R Pξ ψ ξ ψ
= =

= ∑∑  (36) 

 
where ,i jP  is the ( ),i j -th of n m× control points, also called the control mesh. The interval 

1 1,ξ ξ + +  n p × 1 1,ψ ψ + +  m q is a patch and [ ) )1 1, ,ξ ξ ψ ψ+ +× i i j j  is a knot span.  ,
, ( , )p q

i jR ξ η is the 
NURBS basis function in two dimensional space, 

 

  

, , ,,
,

,

( ) ( )
( , )

( , )
i p j q i jp q

i j
i j

N M w
R

W
ξ ψ

ξ ψ
ξ ψ

=
 (37) 

and 

 
, , , ,

1 1
( , ) ( ) ( )

n m

i j i p j q i j
i j

W N M wξ ψ ξ ψ
= =

= ∑∑
 (38) 

 
The derivative of ),(,

, ηξqp
jiR  and , ( , )i jW ξ ψ with respect to ξ  is derived by simply 
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applying the quotient rule to (37) and (38),  
 

 
,

, , , , , , , ,
,

2
,

( , )
( ) ( ) ( , ) ( ) ( )( , )

( ( , ))

i j
p q i p j q i j i j i p j q i j

i j

i j

W
N M w W N M wR

W

ξ ψ
ξ ψ ξ ψ ξ ψξ ψ ξ

ξ ξ ψ

∂
′ −∂ ∂=

∂
 (39) 

and 

 ,
, , ,

1 1

( , )
( )

n m
i j

i p j q i j
i j

W
N M w

ξ ψ
ξ

ξ = =

∂
′=

∂ ∑∑  (40) 

 
The domain of problem is divided into patches and each patch is divided into knot spans or 

elements. Patches play the role of sub-domains within which element types and material 
models are assumed to be uniform [25]. Nevertheless, many complicated domains can be 
represented by a single patch. 

 
4.2. NURBS based isogeometric analysis formulation 

Considering a 2-D linear elasticity problem with the presence of body force b  and traction 
force t . Implementing the virtual displacement method, the following weak form equation is 
obtained, 

 
0

t

T T Td d dδ δ δ
Ω Ω Γ

Ω − Ω − Γ =∫ ∫ ∫ε σ u b u t
 (41)

 

 
where σ  is the stress tensor and ε  is the strain tensor. In isogeometric approach, the discretization 
is based on NURBS. Hence, the geometry and solution field are approximated as,  

 
 ( , ) ,= ∈Ωξ η ξ ηx RP patch  (42) 

 
 ( , ) ,= ∈Ωξ η ξ ηu Rdh

patch  (43) 
 

where { }1 1 1 1( , ) , , ,+ + + +   Ω = ∈ ∈   ξ η ξ ξ ξ η η ηpatch n p m q . The matrix-form of ,i jR and ,i jP can 

be changed into vector-form by mapping from ,i j subscripts to k by: 
 

 ( 1) , with 1,2,..., .k i j n k n m= + − =  (44) 
 
So, the control points are defined as, 
 

 1,1 1,1 2,1 2,1 ,( , , , ,..., )x y x y y T
n m=P P P P P P  (45) 

 
The values of solution field at the control points, also called control variables, in the present 

IGA formulation are displacements and can be arranged similar to the control points in a 
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vector-form, 
 1,1 1,1 2,1 2,1 ,( , , , ,..., )x y x y y T

n m=d d d d d d  (46) 
 
The matrix R  is obtained from NURBS basis functions, 
 

 
1,1 2,1 ,

1,1 2,1 ,

0 0 ... 0
0 0 ... 0

n m

n m

R R R
R R R

 
=  

 
R  (47) 

 
Next, the stiffness matrix for a single patch is computed as, 
 

 ( , ) ( , )
Ω

= Ω∫∫ ξ η ξ ηK B DB J
%

%T
patch t d  (48) 

 
where t  is the thickness, Ω%  is the parametric space, ( , )ξ ηB  is the strain-displacement 
matrix, and J is the jacobian matrix which maps the parametric space to the physical space. 
D  is the elastic material property matrix for plane stress. The force vector on a single patch in 
the presence of body forces b  and traction forces t is obtained as, 

 

 
T T

b bd d
Ω Γ

= Ω+ Γ∫∫ ∫f R b J R t J
% %

% %  (49) 
 

where Γ%  is the traction boundary in the parametric space, bR  is the NURBS basis function 
evaluated on the traction boundary and bJ  is the Jacobian that maps the traction boundary into 
a part of physical space boundary. The control variables can then be solved by the following 
discretized equilibrium equation, 

 
 Kd = f  (50) 

 
The solution field at each point of the physical space can be approximated by equation 

(50). For numerical integration, the standard Gauss-quadrature is used over each element 
(knot span). The number of quadrature points depends on the NURBS order. The details of 
spaces, mapping and integration in isogeometric analysis are shown in Figure 3. Note that the 
physical mesh is only an image of knot spans on the physical space. 

 
4.3. H-refinement or knot insertion 

There are three types of refinement in isogeometric analysis: h-refinement or knot insertion, p-
refinement or order elevation and k-refinement [25]. In this paper, we employed only the h-
refinement.  

Knot insertion is a procedure that arbitrary new knots are added to a knot vector without 
any change in the shape of the B-spline curve. If there are m=n+p+1 knots in the knot vector 
of the B-spline curve, where n is the number of control points and p is the order of B-spline 
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curve, by adding a new knot, a new control point must be added. Also, some current control 
points must be redefined. Consider a knot vector { }1 2 1ξ ξ ξ = + +Ξ = , , ..., m n p  with n control 

points 1 2, ,..., nP P P  and the order of p . Let [ ]1ξ ξ ξ +∈ˆ ,k k  be a desired new knot. The knot 
insertion procedure has the following 3 steps [31], 

1. Find k such that ξ̂  belongs to [ ]1ξ ξ +,k k . 
2. Find 1p + control points 1, ,...,k p k p kP P P− − + . 

3. Compute p  new control points iQ from the above 1p + control points using equation (27). 

 1(1 )i i i i iQ P Pα α−= − +  (51) 
 

where αi is obtained from, 

 

ˆ
for 1i

i
i p i

k p i kξ ξ
α

ξ ξ+

−
= − + ≤ ≤

−  (52) 

 

Figure 3. Physical space Ω is mapped into the parametric space 
~

Ω  using NURBS basis 
functions. For numerical integration in the parametric space, each knot span is mapped to the 

parent element, where the integration is performed on 
 
By performing the above procedure, the new knot vector and control points are obtained as, 
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{ }1 2 1

ˆ, ,..., , , ,...,+ξ ξ ξ ξ ξ ξk k m  
{ }1 2 1 2 1, ,..., , , ,..., , , ,...,k p k p k p k k k nP P P Q Q Q P P P− − + − + +

 (53) 

 
Now, this knot insertion algorithm is extended to a NURBS curve. For this purpose, a 

given NURBS curve in d-dimensional space is converted into a B-spline curve in (d+1)-
dimensional space, then by applying the knot insertion algorithm in this B-spline curve, the 
new control points are obtained. These new control points should then be projected to d-
dimensional space to obtain the new control points of the NURBS curve. Consider control 
points ( , )i i iP x y= with the weights iw . By converting these control points to 3-dimensional 
space, ( , , )w

i i i i i iP w x w y w= , the new control points are then computed from equation (27), 
 

 1(1 )w w w
i i i i iQ P Pα α−= − +  (54) 

 
The location of control points in 2D are obtained by the following projection technique: 
 

 
1

1

(1 )
(1 )

w w
i i i i

i
i i i i

P PQ
w w

α α
α α

−

−

− +
=

− +  (55) 
and the weights are: 

 1(1 )
iQ i i i iw w wα α−= − +  (56) 

 
 

5. ISOGEOMETRIC ANALYSIS WITH LEVEL SET METHOD FOR 
STRUCTURAL TOPOLOGY OPTIMIZATION 

 
In proposed approach, the discrete problem is formulated in isogeometric analysis framework. 
The general optimization problem stated in (5) is specified for an isogeometric discretization. 
We apply objective functions based on compliance of particular locations of the structure. 

In geometry construction, we construct the geometry by performing knot insertion 
algorithm on the initial geometry model is shown in Figure 4. The initial geometry is modeled 
as a NURBS surface of bi-quadratic order with 6×4 control points. The open knot vectors in ξ 
direction is {0,0,0,0.25,0.5,0.75,1,1,1} and in ψ direction is {0,0,0,0.5,1,1,1}, which yields 
4×2 knot spans. By dividing each knot span in ξ  and ψ direction into 10 equal parts, the 
physical mesh with 40×20 equal knot spans and the control mesh with 42×22 control points is 
obtained that is shown in figure 5. Note that the location of the control points in the initial 
geometry model plays an important role in reaching the desired analysis model. We used the 
local support property of NURBS basis function, i.e., there are only( 1) ( 1)p q+ × + number of 
nonzero basis functions within each knot span, where p  and q  are the orders of NURBS. We 
know that each NURBS basis function has a corresponding control point. So, we can assign to 
each knot span, ( 1) ( 1)p q+ × + control points. In this work, 2p q= =  and we have 3×3 
control points for each knot span, as shown in Figure 5.     
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(a) (b)  
Figure 4. Initial geometry model. (a) Control mesh. (b) Physical mesh 

 
(a) (b) 

(c) (d) 

 
Figure 5. Geometry representation for the analysis model. (a) Physical mesh that is an image of 
40×20 knot spans. (b) Control mesh that is consisting of 42×22 control points. (c) Local view of 
the left top corner of physical mesh, shows elements a, b and c. (d) Control points have supported 

on elements a, b and c 
 
 

6. NUMERICAL IMPLEMENTATION 
 

The objective of this section is to describe the numerical implementation of the proposed 
method. These implementations are developed to improve the performance of the proposed 
method. 

 
6.1. Filtering 

As mentioned before, shape derivative causes the level set function to have non- uniform value 
at points in design domain and can lead to numerical errors.  To avoid quick changes and 
suppress the non smooth variation a filtering technique originally developed in image 
processing is used. One of the filtering approaches may be employed in structural topology 
optimization problems is convolution technique. In convolution based methods the density of 
each pixel is changed according to information from its neighborhood. The convolution 
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process can be formulated as, 
 

 
1 1= =

= + − + −∑ ∑( , ) ( , ) ( , )
n n

k l
c i j h k l A i m k j m l  (57) 

 
where ( , )h k l is the density of the pixel located in the thk row and thl column of the image and 
c is the filtered density of the pixel. The so called impulse response matrix ( , )A i j  is a n n×  
square matrix that has to be chosen according to the purpose of the filter. The 
variable 1 2( ) /m n= + , where n  is the number of pixel in each side of the filter window. It 
should be noted that by implementing this method, the original optimization problem is 
changed and as result of seeking clear images, suboptimal results for the value of the objective 
function are obtained. 

 
6.2. Ersatz material approach 

A challenge to structural topology optimization is the fact that the isogeometric mesh will 
become distorted after the shape and topology change. Under these circumstances, the 
structure domain must be remeshed. However, remeshing is a complicating and time 
consuming task, and will bring down the efficiency of optimization. Instead, in this paper, the 
so-called “ersatz material” approach [15] which has been widely used in sensitivity analysis of 
the compliance optimization problem. In this approach the void domain is assumed to be 
replaced by a type of “weak” material, whose Young’s modulus is very low. More precisely, 
we define a Young’s modulus 0E  as,     

 
 cEE =0  (58) 

 
Where E is the Young’s modulus of the solid material of the structure and c is a coefficient.  

The amount of this coefficient is selected as c = 1 for solid material and c = 0.0001 for void 
domain. Note that c cannot be too small, otherwise the stiffness matrix will be singular. Moreover, 
for the elements intersected by the boundary, Young’s modulus is calculated according to the 
fraction of solid material. For example, in one element, if the volume of solid takes one half of the 
volume of the element, then the Young’s modulus of this element is set to 0 0.5E E= . 

 
 

7. NUMERICAL EXAMPLES 
 

In this section, two widely studied examples in structural topology optimization are used to 
illustrate the potentials of the proposed method. The optimization problem is considered as the 
compliance minimization subjected to volume constraint. The units of all the parameters can 
be defined flexibly, but they should remain unchanged during all different stages. All 
numerical examples have the following data, Young’s modulus of real material is assumed 1, 
ersatz material 10-3, Poisson’ ratio for two material is assumed 0.3 and the order of NURBS 
basis functions in each direction is 2. In this method, the level set function is initially 
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embedded as a signed distance function, but no further reinitialization is applied in the rest of 
iterations. Also, the present algorithm is terminated when the relative difference between four 
successive objective function values is less than 410− or when the given maximum number of 
iterations has been reached.  

 
7.1. Cantilever beam 

Figure 6 shows the design domain of a cantilever beam with a size of 1L = . The boundary of 
the left side is fixed, and a vertical concentrated force F=1N is applied at the center point of 
the right side boundary. The specified material volume fraction is 50% . In this example, we 
use Wendland C2-CSRBF and the knot points are distributed uniformly in the design domain. 

 

Design Domain 

2L 

L F 

 
Figure 6. A cantilever beam 

 
For comparison purpose, first, we apply finite element method as an analyzer when the 

level set mesh coincides with the finite element mesh. The design domain is discretized with 
80 40× finite elements and the initial design is completely solid. It’s clearly observed that the 
results of IGA by 800 elements agree well with FEA by 3200 elements. This IGA feature 
simplifies using of relatively coarse meshes in the topology optimization procedure. 

Other parameters that are used for solving this example are ds=5, λ =0, Λ = 20, α = 0.95. 
Figure 7 displays the evolution process of the cantilever beam at different stages. These 
figures show that the proposed level set method can handle shape fidelity and topological 
changes simultaneously by retaining a smooth boundary. In this method the initial level set 
surface is embedded as a signed distance function and we do not apply reinitialization at the 
rest of the topology optimization procedure. Also, because the Hamilton-Jacobi partial 
differential equation is converted to an ordinary differential equation, we do not need to meet 
the CFL condition for time step, thus we chose 10τ = as a time step. These circumstances 
caused the nucleation of holes in design domain during the optimization process.  

 

   
(a) Initial design  (b) Step 10 (c) Step 15 



S. Shojaee, M. Mohamadian and N. Valizadeh 

 

64 

   
(d) Step 20 (e) Step 25 (f) Final design 

Figure 7. The evolution of optimal topology of the cantilever beam using FEA  
 
Also, Figure 8 shows the strain energy and the volume fraction in different iterations.  
 

 
Figure 8. The History of objective function and volume 

 
In second step, we optimized this example when the isogeometric analysis is applied. Here, 

the isogeometric mesh does not correspond with the level set mesh. More preciously, the 
design domain is divided with 40 80× level set mesh and 20 40×  isogeometric mesh. The 
accuracy of the analysis when we apply isogeometric method with coarse mesh is partially the 
same as we use the finite element mesh with fine size. Figure 9 illustrate the designs in 
different stages of the optimization process, when we use the isogeometric method for 
analyzing. As shown in this figure, one can find that the two different schemes can lead to the 
similar designs. But, because in later scheme we use a coarse mesh for dividing the design 
domain, the total time of the optimization process when we apply the isogeometric method is 
much better than we use finite element method as an analyzer. The results obtained with the 
two different schemes are listed in Table 1. Figure 10 shows that the convergent curves of the 
objective function and the volume ratio. 

 

   
(a) Initial design (b) Step 10 (c) Step 15 
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(d) Step 20 (e) Step 30 (f) Final design 

Figure 9. The evolution of optimal topology of the cantilever beam using IGA 
 

 
Figure 10. The History of objective function and volume ratio 

 
Table 1. Comparison of the FEA and IGA 

Analyzer J(Ω) (objective) T(s) (total time) N (iterations) 

FEA 62.66 863.72 60 

IGA 62.54 541.14 57 
 

 
(a) With 12 holes 

 
(b) With 33 holes 
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(c) With 44 holes 

Figure 11. The effect of the initial design of the cantilever beam 
 
We also investigate the influence of different number of initial holes on the final design. 

Figure 11 a, b and c show that the identical optimal structures are obtained regardless of 
number of initial holes in the design domain and the complexity of the final topologies do not 
change obviously with the different number of initial holes. In table 2 the results of these 
different initial designs are listed.            

 
Table 2. Results of different designs of the cantilever beam 

Initial design J(Ω) 
(objective) T(s) (total time) N (iterations) 

Figure 13.a with 12 holes 63.06 531.02 53 

Figure 13.b  with 33 holes 

Figure 13.c  with 44 holes 

62.83 

62.88 

536.55 

537.63 

55 

55 
 

7.2. A MBB beam 

The design domain of a MBB beam is shown in Figure 12. A load F=300 is applied at the center of 
the top edge. Its left corner at the bottom is fixed and the right corner is supported as a roller. We 
also consider L=1 and the design domain is discretized with 120 30× elements. For this example, 
The IGA mesh is corresponding with level set mesh. The volume fraction is 40% and the other 
parameters, using for solving this problem, are 5, 0, 30ds λ= = Λ = , 0.9α = . In Figure 13, the 
evolution of optimal topology is displayed by use of the present method.    

 
F 

L 

2L 2L 

Design Domain 
 

 
Figure 12. A MBB beam 
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(a) Initial design  (b) Step 5 

  
(c) Step 15 (d) Step 20 

  
(e) Step 25 (f) Final design 

Figure 13. The evolution of optimal topology of the MBB beam  
 
 

8. CONCLUSION 
 

In the present study, the composition of RBF level set method with isogeometric analysis has been 
successfully applied to the structural shape and topology optimization. In this method, the discrete 
problem is formulated in isogeometric analysis framework. A parameterized level set method with 
RBFs is used for structural topology optimization. The proposed isogeometric based topology 
optimization method has several advantages compared to the finite element based method. Unlike 
the standard FEM-based design optimization, the computational time can be reduced by using this 
analyzer, while obtaining the same optimal topology. Due to the desirable characteristics of 
NURBS in IGA, it does not have any destructive effect on the quality of discretization. 
Furthermore, the proposed method in this paper has its strength on the capacity of dealing with the 
design dependent load problem or stress optimization problem. 
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