دوره 14، شماره 4 - ( 7-1403 )                   جلد 14 شماره 4 صفحات 663-647 | برگشت به فهرست نسخه ها


XML English Abstract Print


چکیده:   (4897 مشاهده)
In this paper, a neural network is trained for optimal nodal ordering of graphs to obtain a small wavefront using soft computing. A preference function consists of six inputs that can be seen as a generalization of Sloan's function. These six inputs represent the different connection characteristics of graph models. This research is done with the aim of comparing Sloan's theoretical numbering method with Sloan's developed method with neural networks and WSA meta-heuristic algorithm. Unlike the Sloan algorithm, which uses two fixed coefficients, six coefficients are used here, based on the evaluation of artificial neural networks. The weight of networks is obtained using Water Strider algorithm. Examples are included to demonstrate the performance of the present hybrid method.
متن کامل [PDF 926 kb]   (1948 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal analysis
دریافت: 1403/8/24 | پذیرش: 1403/10/8 | انتشار: 1403/7/25

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.